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ABSTRACT 
 
 

In Littoral Warfare (LW), naval operations face a whole new range of missions 

and types of threats. In such situations, Electronic Warfare (EW) systems are extremely 

important, yet constantly challenged to perform faster and more accurate detection and 

recognition of potential threats. However, meteorological and oceanographic (METOC) 

factors can severely modify the effectiveness of EW systems, particularly against low 

detectable targets in warm waters. 

Therefore, this thesis analyzes the effects of tropical littoral environments in the 

expected performance of generic RF and IR systems when used under these scenarios. It 

analyzes the outputs of propagation models included in the software suites AREPS and 

TAWS when using actual data from different sources in the Yucatan Channel.  

The results of this study demonstrated how radically the environmental conditions 

can change, clearly modifying the efficiency of surveillance and detection systems in 

shipborne platforms. Further, several issues related to the need of valuable data and 

additional research are addressed, while providing useful insights to operational 

commanders and decision makers for the use of EW systems and available Tactical 

Decision Aids (TDAs) at the typical LW scenarios in tropical waters. 
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I. INTRODUCTION 

A. THE CONCEPT OF LITTORAL WARFARE  

In the last decade, naval operations have significantly shifted from high seas 

(blue-ocean) engagements to what is known as Littoral Warfare (LW), which has been 

growing in both strategic and tactical significance, as well as complexity. Littoral regions 

have been defined as the seas and oceans such that they are directly under control of and 

vulnerable to the striking power of sea-based forces (Ellington, 1995). LW, therefore, 

relates to the dominance of the oceans and seas adjacent to the coast from which 

maritime countries obtain most of their power and resources. However, this concept also 

implies that the operating naval forces must face a large variety of challenges such as 

tides, reefs, shallow waters, and mines while dealing with confined seas and air space, 

congested by both military and civilian traffic. 

Naval operations are now responding to new types of warfare, such as asymmetric 

warfare and the war against terrorism. In these modalities, the enemy is very likely to use 

small cheap weapons with unconventional tactics against large objectives, trying to cause 

major impacts, not only in the fighting elements themselves, but in the population and the 

surrounding environment as well. Moreover, navies are increasingly involved in 

“Military Operations Other than War” (MOOTW), which frequently include maritime 

interdiction and traffic control, search and rescue, and law enforcement operations, for 

example, against drug trafficking and piracy. 

To remain current with the complexity of such scenarios, the use of Electronic 

Warfare (EW) systems is extremely important. In LW, the rapid and accurate 

identification of potential threats and targets can represent the difference between success 

and failure in the achievement of the mission, and even the survivability of the fighting 

platform itself; hence, the relevancy of high performance modern EW systems. 

Meteorological and oceanographic (METOC) factors can severely modify their 

performance and effectiveness, particularly in tropical regions, which usually imply high 

water vapor content in the air above the surface, and high probability of layering with 

anomalous electromagnetic propagation conditions. 
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METOC characteristics of tropical littorals have been widely studied, but mostly 

for purposes other than their impact on littoral naval warfare. There are several studies 

regarding the factors involved in the anomalies of propagation of Electromagnetic (EM) 

and Infrared (IR) waves through the atmosphere. However, they do not focus on the 

performance of both radar and IR systems under the encountered conditions in tropical 

littoral environments, where often METOC data sources are not sufficient and/or 

adequate enough. The reliable evaluation of such performances does not seem to have 

been thoroughly assessed, and needs to be resolved for the proper employment and 

efficiency of these systems, especially when they are expected to perform against small 

targets with low detectability. 

There are several computer-based effects tools known as Tactical Decision Aids 

(TDAs), which include models to analyze the expected propagation conditions by using 

the available data of atmospheric variables. They are capable of providing very helpful 

and timely guidance about such conditions. Yet their use in tropical littoral environments 

demands more careful evaluations of their performance, which has not been thoroughly 

done. This can be critical for highly valuable assets, and thus, will be the main thrust for 

this study, which will focus on the issues of anomalous propagation patterns and their 

impact for operational purposes. 

B. ORGANIZATION OF THIS WORK 

This study will evaluate the effects of abnormal atmospheric conditions on the 

performance of generic EW systems, based on the use of Tactical Decision Aids (TDAs) 

and the existing sources of METOC data in a typical tropical littoral scenario. Therefore, 

some essentials in EW systems and their relationship with LW issues will be discussed in 

Chapter II. To maintain the general applicability of this work, it will be based upon 

common radar and IR devices, with generic characteristics and technical specifications 

for commercially available off-the-shelf (COTS) equipment, resembling actual systems 

currently in use. 
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Chapter III describes the theoretical background of the main atmospheric factors 

involved in the performance of EW systems, as well as the propagation TDAs used for 

the evaluation of such factors in this study, AREPS (Advanced Refractive Environment 

Prediction System) and TAWS (Tactical Acquisition of Weapons Systems). 

Chapter IV frames this work in the northwestern Caribbean Sea, namely in the 

Yucatan Channel, defining three specific case studies according to the available METOC 

data sets, the climatology for this region, and the expected existence of anomalies in EM 

and IR propagation year round.  

Case studies will be analyzed in detail in Chapter V, based upon the outputs from 

AREPS using climatological data sets, and then compared with their outputs when actual 

data from alternative sources is used. Next, Chapter VI will discuss some issues for the 

employment of IR devices in shorter ranges, where they can actually interact with Radar 

and ESM systems, and the expected effects of the environment in the overall 

performance. 

Finally, Chapter VII summarizes the results and conclusions of this study that 

may provide further insights and guidelines to assist operational commanders and 

mission planners in their decision making processes. It also discusses the achievable 

benefit of allocating additional resources and better procedures to provide more accurate 

local data, including alternative sources for LW purposes. Some proposals for further 

research to support the improvement of effectiveness in LW missions will also be 

addressed. 
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II. EW SYSTEMS IN LW 

Increasingly restrictive rules of engagement in contemporary naval operations are 

reducing the time frames for making critical decisions. The use of automated systems for 

the detection of moving targets, stabilization of platforms, and targeting functions, has 

allowed shortened response times, as well as interaction with other ship systems for fire 

control and monitoring. However, this also requires more and better information, with 

much faster processing for feedback and control purposes in near real-time. 

One approach to provide the required data has been the integration of 

complementary sensors. The combination of different radars, Electronic Support 

Measures (ESM), Electro-Optical/Infrared (EO/IR) sensors, and sometimes Light 

Detection and Ranging (Lidar) can allow the exploitation of spatial and frequency 

diversity, as well as overcoming each sensor’s weaknesses while enhancing their 

respective strengths. Therefore, it is always important to maintain a clear perception of 

the achievable performances for each system. 

A. ES SYSTEMS 

Traditionally, Electronic Support (ES) and ES Measures (ESM) were aimed to 

reconstruct the EM scenario in the environment (known as Electronic Order of Battle, or 

EOB) in almost real time for self defense purposes, by discovering the presence of enemy 

platforms with passive surveillance of a wide area. According to current doctrines, 

Electronic Warfare Support (ES) is now a much broader concept, involving all sorts of 

tasks under the direct control of an operational commander to search for, intercept, 

identify, and locate sources of intentional and unintentional radiated EM energy for the 

purpose of immediate threat recognition, targeting, and the supply of information that 

enables the implementation of proper Electronic Attack (EA) and Electronic Protection 

(EP) actions, planning, and conduct of future operations (JCS Joint Pub. 3-51). 

ESMs can provide passive intercept, analysis and direction finding capability 

against RF signals of interest, as well as crucial information for targeting over-the-

horizon weapon systems at long range, typically out to approximately 70-90 km. 
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Such a RF scenario may be truly complex, thus, ESM systems can be much more 

than a simple Radar Warning Receiver (RWR). They may be equipped with many 

auxiliary circuits, sometimes even forming a complete surveillance network. Typical 

naval ESM systems usually work between 0.5-18 GHz, with slant (45°) or circular 

polarizations, and sensitivities from about -50 to -65 dBm (Neri, 1991, p. 349). 

However, ESMs have some drawbacks that may degrade the essential high 

performance of the combat system. They rely only on the emissions from active sources, 

and may not be able to detect emissions from Low Probability of Intercept (LPI) radars. 

Conventional ESMs can also be easily degraded because of reflected signals and 

multipath effects, the increased number and complexity of operations in congested 

littorals, and more sophisticated radar techniques (such as agility, jittering, modulation, 

compression, multimode and rapid mode changes). 

B. RADAR SYSTEMS 

Radars are essential components of the ship’s fire control and self defense 

systems because of their 3-D detection and tracking capabilities in almost any weather 

against threats approaching from both air and sea. Most countries use powerful long-

range radars in their defense systems for early warning purposes, but for LW, short to 

medium range radars with higher resolution are preferred in order to cope with “hard to 

detect” targets such as helicopters, small fast boats, and sea skimming missiles. 

All radar signals can be reflected from any surface, but there will be an inherent 

phase shift. Additionally, differences in length between direct and reflected paths will 

result in an additional phase shift. The resultant phase differences will produce either a 

constructive or destructive interference, so the overall propagation will be in a lobing 

pattern, as shown in Figure 1. 
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Figure 1.   Lobing effect in antenna radiation pattern (From Skolnik, 2001, p. 491) 

This pattern can be severely modified by many different factors such as terrain 

features and atmospheric refraction. They are very hard to account for, but their effects 

may be computed by rays tracing techniques and refractivity models, one of whose 

outcome can be the expected spatial distribution of the signal intensity levels. 

The new Multifunction Radars (MFRs) are single radar suites of high 

performance phased arrays, such as Lockheed Martin's S (E/F) band fixed array 

AN/SPY-1 family used in the Aegis combat systems. Those MFRs are designed to detect 

and track anti-shipping missile threats, continuous wave target illumination, missile mid-

course guidance, and terminal homing for weapons such as RIM-7P Sparrow and the 

Evolved SeaSparrow Missile (ESSM). Further improvements have been achieved with 

Active Phased Arrays radars, such as the Alenia Marconi S (E/F) band SAMPSON, and 

the X (I/J) band APAR from Thales (Janssen, 2002). They can provide 360º coverage in 

azimuth and up to 70º in elevation, with maximum ranges varying from 32 km (surface 

search) to 150 km (air-target/back-up volume search), and able to track more than 150 

surface targets or more than 200 air targets. 

The problems with the MFR technology are the high costs, and their size restricts 

them to large ships. As a consequence, there have been significant efforts to develop 

lighter versions with similar technology and architecture. They can now be integrated 
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into a smaller vessel’s superstructure or elevated rotating plate arrays, enabling them for 

multi-engagement scenarios, so they may be the core of surface/anti-air self defense and 

limited local area defense for more effective littoral ships. 

However, radars may have several inherent drawbacks for LW. They are all active 

systems, and in the littorals it is often undesirable to transmit any signal that might be 

exploited by enemy systems or interfere with several other RF devices near the coast. 

Additionally, many existing naval radars were designed for “blue water” operations, and 

may not be necessarily able to cope with low detectable targets; particularly when 

operating under conditions of severe clutter, jamming and accidental interference, main 

beam multipath effects, and imprecise estimation of target characteristics, which are 

usual in such an environment. 

Another important issue is due to atmospheric refraction. For example, weapon 

control radars must effectively keep track of the designated targets, direct that weapon to 

an intercept, and assess the effectiveness of the engagement (Battle Damage 

Assessment). Although all these functions rely on the high accuracy of the radar’s range 

and direction measurements, the anomalies of EM propagation in the atmospheric 

conditions normally encountered in tropical littorals can be the cause of severe changes in 

the range of detection capabilities and elevation angle tracking distortions. 

C. EO/IR SENSORS 

The limitations of radar systems in the cluttered littoral environment, and 

technological advances recent years in Electro-optical (EO) sensors, such as thermal 

imagers exploiting the infrared (IR) spectrum, led to the use of EO Tracking and Fire 

Control Systems (EOTFCS). They offer passive detection and positive identification at 

ranges of 15-20 km, with high line-of-sight target pointing accuracy, high quality visual 

imagery to enable positive target identification, tracking for small and medium caliber 

weapons control, and low susceptibility to jamming and other countermeasures. 

Performance-wise, EO/IR sensors have some advantages over radar-based 

systems. They are not hampered by mirror effects or by lobing at low elevations, and 

perform well against slow-moving low signature targets in cluttered environments. They 

achieve higher resolution and update rates, and are harder to counter since radar 
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countermeasures do not affect them, while flares and smoke have only limited effect on 

their performance. Furthermore, anti-ship missiles cannot avoid aerodynamic heating, 

and consequently are very visible to IR sensors regardless of their stealthy design. 

IR sensors have proven to be very useful for threat alert and weapon/sensor 

cueing applications. Currently, several Infrared Search and Track (IRST) systems are 

designed for advanced surveillance and tracking against all types of aerial and surface 

targets in cold or warm waters. This capability is indispensable for the stealthy operation 

of the ship when the EMCON conditions do not allow the use of radars. They can 

normally include dual-band (3-5 and 8-12 µ m) high resolution third generation thermal 

imagers, CCD daylight TV cameras, video trackers, and eye-safe laser range-finders 

(ESLRFs). Some examples are the VAMPIR MB from SAGEM/EADS, SIRIUS from 

Thales, and MSP500 from STN Atlas Elektronik (Scott, 2003). 

The U.S. Navy is improving the Boeing Thermal Imaging Sensor System (TISS), 

the SeaFLIR AN/KAX systems, and developing a new IRST system on major surface 

combatants, featuring a 3-5µ m thermal imager with a 512 x 484 element InSb detector, a 

dual field-of-view CCD TV and a Class 1 eye-safe laser rangefinder, all mounted in a 

spherical director assembly with reduced jittering of 15 mrad (Janssen, 2003). 

EOTFCS are increasingly used onboard many major surface warships as an 

adjunct or alternative gun fire control within a wider combat system; but they have also 

become a low cost weapon control system option for smaller warships such as mine 

countermeasures vessels, offshore patrol vessels, and patrol crafts. Besides their use for 

detection and tracking of low altitude air and surface targets, they allow the crew to 

identify any contacts visually in the area at night and in reduced visibility, and even the 

possibility of recording events for use as legal evidence, thus becoming valuable 

multipurpose tools to maintain high-quality situational awareness, navigation support, 

moored mine detection, covert surveillance and protection against asymmetric threats, 

among others. 
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There is a wide variety of low cost EO/IR surveillance and/or fire control systems 

available on the market, such as the Radamec EOS for small patrol boats. It normally has 

a 3-5 µ m thermal imager, and may include a compact TV camera, optional laser range-

finder, and/or low light level TV (LLLTV). Other examples are the MEDUSA from 

Alenia Marconi, NAJIR from EADS, the RADAMEC 2500, SAFIRE from FLIR 

Systems, and IRSCAN and MIRADOR from Thales.  

However, their normal range performances are rather small. For example, the 

EOS typical performance would be over 20 km to detect and classify a 25 x 25 m 

merchant vessel, 13.8 km to detect a 6 x 6 m fishing boat and 8.3 km to classify it, and 

nearly 1,000 m to detect and classify a person. This is a very important consideration 

when defining a target for analysis, and when conducting comparisons of performance 

for these systems. 

D. INTEGRATION OF MULTIPLE SENSORS 

A new trend in modern warfare is the use of surface and anti-air warfare suites, 

combining volume search and target designation radars with fire control tracking and 

illumination (I/J-band) radars, generally supported by coaxially-mounted EO adjuncts 

and laser range-finders. Some examples of target designation radars widely used are the 

EADS TRS-3D, the Ericsson Sea Giraffe, the Thales MRR, Sea Tiger and SMART-S. 

Typical tracking and illumination radars can provide fire control of medium caliber guns 

as well as semi-active homing of radar guided missiles, such as the IAI Elta EL/M-2221, 

and the SaabTech Systems CEROS 200 (Janssen, Op. Cit., 2003). 

Sensor and processing improvements in the latest generation of EOTFCS allowed 

the development of lightweight low RCS (stealthy) directors, intelligent digital trackers, 

and rationalized electronics packages. It is now common to integrate third generation 

mid-waveband (3-5 µ m) thermal imagers with Mercury Cadmium Telluride (MCT) 

detectors in EO directors as part of unified combat systems controlled through a standard 

multifunction console. 

IRST systems are also commonly used as a complement to the MFRs, with 

superior performance against low level close threats. They improve the tracking 

performance, with the radar providing the accurate range, and IRST providing spatial 
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resolution with better recognition and identification of targets, which may gain vital extra 

seconds for hard-kill weapons or soft-kill countermeasures to be deployed effectively. 

Nevertheless, limitations inherent for each system will still play an important role, so 

their combined effects should be carefully addressed. 

Standard conditions are seldom found in real engagement scenarios, thus the 

assumptions and compensations made are frequently inaccurate. Despite the technical 

improvements of the EW systems employed, they will always be subject to the 

atmospheric propagation effects, so proper corrections must be made for the specific 

environment where each system is expected to perform. 

For example, atmospheric subrefractive conditions can reduce the achievable 

ranges for both ESM and radar systems, just as superrefractive conditions can 

significantly increase them as well. Normally, the expected detection ranges for radars 

are shorter than those for ESMs in similar frequency bands because they perform under a 

“two-way” propagation basis; but when anomalous refractivity happens, it affects any 

emission source as well, so the ESMs performance would be inadvertently modified due 

to their passive nature. 

Another example may be when an EMCON condition of radar silence makes the 

ship depend solely on the IRST component, or when expected threats exceed the IRST 

capabilities (such as out of line of sight, maximum range, or against a cluttered 

background with limited thermal contrast), relying then on radar effectiveness only. 

Therefore, it is extremely important to be aware of when and where such limitations may 

significantly modify the system performance. 

E. SOME CONSIDERATIONS ABOUT ANALYSIS OF PERFORMANCES 

Radars and ESMs have been considered to perform fairly well in almost any 

weather conditions when the right settings and adjustments are made. However, as 

explained, anomalous refraction can severely modify their propagation paths. This effect 

is hard to detect and even harder to measure so their performance can be seriously 

degraded. 

In the case of thermal imaging devices, they detect IR waves emanating from the 

targets, so their performance is more affected by attenuation because of absorption and 
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scattering of the IR energy rather than refraction, as in the case of radars. This is mainly 

due to the atmosphere components such as water vapor and oxygen molecules, as well as 

aerosols suspended in the atmosphere. 

ES and IR systems are generally described by different performance parameters, 

sometimes technically complex and difficult to evaluate. Range, spectral response, 

resolution and sensitivity are some examples of usual MOPs. Another common MOP 

may be the achievable probability of detection, which is a primary function for both, 

assuming specific operational conditions such as range and target characteristics. 

There are several ways to account for radar performance evaluations. For 

example, the radar range equation has several versions (Skolnik, 2001); one of them is: 
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In this equation, the achieved range is expressed as a function of the transmitted power 

PT, the number of pulses integrated Ni, the gain of the antenna for transmission GT and for 

reception GR, the radar cross section of the target σ , and the wavelength λ . The 

denominator accounts for the noise of the system by using the Boltzmann’s constant k, 

the absolute temperature T, bandwidth B and noise factor F. It also includes the signal-to-

noise ratio S/N required to achieve certain probability of detection with a given false 

alarm rate Pdfa, and all the losses of the system grouped by the term L, excluding the 

atmospheric effects. 

Radar is less affected by atmosphere than are optical and IR sensors, unless they 

use higher microwave and millimeter frequencies. Any energy traveling through the 

atmosphere suffers from atmospheric attenuation, but for lower frequencies (below 10 

GHz), the attenuation is reasonably predictable. Although it is not usually strong enough 

to be a factor, it is normally accounted for by the propagation factor (Fpt in the range 

equation), generally assuming an exponential behavior. For higher frequencies in the 

millimeter wave range, the attenuation increases and becomes more dependent upon 

absorbing characteristics of H2O and O2, as shown in Figure 2.  
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Figure 2.   Atmospheric attenuation (From NAVAIR, 1997) 

Precipitation backscatter can become important when the wavelength is similar or 

smaller than the raindrop diameter. Echoes from precipitation can mask a target for 

frequencies above the X (I/J, 10 GHz) band. For this reason, most of the tracking radars 

work in this band, achieving the best resolution and accuracy performance with the least 

degraded propagation. 

A major problem with the radar range equation is that lobing and refraction 

effects are hard to include in such expressions, since the propagation factor does not 

account for it. There are actually some tools, such as the Advanced Refractive 

Environmental Prediction Software (AREPS), that allow analysis of performances for 

both ES and Radar systems, since they work basically in the same RF bands and the 

atmospheric effects mentioned above are related to the EM frequencies, or equivalently 

the corresponding wavelengths, rather than any other characteristic of the employed 

signals. 

For the purposes of this study, some “generic” radars will be analyzed. The 

parameters utilized resemble those of three different commercially available off-the-shelf 

systems, according to Table 1: 
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 L (D) Band S (F) Band X (I/J) Band 

PT (KW) 120.0 145.0 1000.0 

f (MHz) 1250.0 3500.0 10000.0 

Pulsewidth (µsec) 7.0 0.1 2.0 

PRF (Hz) 3400.0 2400.0 800.0 

GT (dB) 23.0 35.0 40.0 

GR(dB) 23.0 35.0 40.0 

Noise Factor (dB) 4.0 5.0 5.0 

G side lobes (dB) -57.0 -10.0 -10.0 

L (dB) 5.00 3.00 3.00 

Doppler bandwidth (Hz) 3400.00 200.00 200.00 

Freqw. Agility bandwidth (MHz) 50.00 400.00 200.00 

Azimuth beamwidth (deg) 6.00 2.00 3.00 

Azimuth scan rate (deg/sec) 90.00 60.00 60.00 

Pd 0.5 0.5 0.5 

False alarm rate 1e-006 1e-008 1e-008 

Maximum detection range (nmi) 60.65 55.94 139.02 

 
Table 1. Basic parameters of three generic radars. 

Similarly, in the range equation for IR devices, the main problem is accounting 

for atmospheric transmittance. More complex models, such as LOWTRAN, have been 

included in certain TDAs, and they will be discussed in more detail in Chapter VI. 
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III.  METOC FACTORS THAT INFLUENCE THE EM 
PROPAGATION 

In free space (a vacuum), electromagnetic waves propagate in straight paths, but 

in the atmosphere, they have different behaviors. Radar frequencies, ranging from VHF 

to the MM waveband (30 MHz to 300 GHz) according to IEEE (Skolnik, 2001, p. 12), 

are considered to propagate as space waves (either direct or reflected), mostly affected by 

attenuation, scattering, and refraction. 

Their primary path is direct, so to meet the system’s objectives, both the target 

and transmitter must be within the radio horizon, which can be approximately 1/3 larger 

than the visual horizon, due to normal refraction effects. This rule of thumb will also 

depend on the height of both the transmitting and the receiving elements, based on the 

formula 

 2 2t rd h h= +  (3.1) 

where d is the maximum transmitter-receiver distance in nautical miles, while ht and hr 

are the heights in feet of the transmitting and the receiving antennas, respectively. 

A.  REFRACTION  

Vertical spatial variations in the atmosphere produce different speeds of 

propagation along the EM wave front. When this happens, the wave front is refracted. Of 

course, the ray path, which is normal to the wave front, is modified. This could lead to 

over-the-horizon ranges or an apparent position of a detected target being different than 

its actual position. 

EM waves can travel faster in lower indexes of refraction. The ratio of the 

propagation speed in free space c to the propagation speed in the actual medium ν  is 

called index of refraction n: 

   /n c v=  (3.2) 

The typical values of the index of refraction are about 1.000315 for the standard 

atmosphere at sea level; this value indicates a speed very near to that in free space. 
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However, the influence along a wave front over a long path yields significant differences 

for different atmosphere conditions. Further, to have a variable that reflects that 

difference more readily, a refractivity N is defined as 

 
6  ( -1)  10N n x=  (3.3) 

The index n, or refractivity N, is expected to decrease with height. At a boundary, 

the wave path will always be refracted towards the medium with higher n, according to 

Snell's Law: 

 1 1 2 2sin = sinn nφ φ⋅ ⋅  (3.4) 

When the incidence angle 1φ  is large enough, and depending also on the n values, the 

angle 2φ  can approach 90°, Further increases in 1φ  would result in a complete reflection 

called the critical angle. This is important for surface surveillance, because the desired 

propagation ray paths are almost parallel to potential layers in the lower atmosphere. 

Although strict reflection does not occur in the atmosphere, refraction can be severe as to 

completely bend the wave back to the surface. Thus, the refraction can be viewed as a 

virtual reflection. 

Snell’s law also predicts that the radius r of the ray path is determined by the 

index of refraction gradient as r = -1/(dn/dz), where the negative value is used to have a 

positive radius for a ray, and bends downward from the geometric dn/dz = 0 (a flat 

surface with infinite radius). 

Surface observations can provide good insights into the effects of refractivity, but 

when refractivity profiles are complex, such as in ducting conditions, errors can be 

significant. For example, the geometric height z1 of an object above the surface at a 

distance d, using an Earth’s radius re can be approximated by the expression z = d2/2re. 

The apparent height z of that target for a refracted path (geometric height z1, 

minus the refraction effects z2, as shown in Figure 3), can be determined by using an 

equivalent radius of curvature r = -106/(dN/dz). 
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Figure 3.   Refraction induced errors in elevation angles 

In standard conditions (when dN/dz ≈  -40/km) that radius is about 4/3 of the real, 

so the expression to determine z becomes (from Davidson, 2003, p. 3-13): 
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 (3.5) 

As a consequence, it is clear that any radar can produce wrong positions if no 

accurate corrections for atmospheric refraction are made, or they are based only on 

standard values; depending on the method used to compute the heights of observed 

targets, the differences between those and the real positions for low elevation angles 

might be of hundreds of feet. 

B. DUCTING EFFECTS 

When an atmospheric layer shows significant anomalies in the expected n 

gradient, such as thermal inversions and abrupt humidity changes, and the incident angle 

from the rays is close to the critical angle, it can act as a waveguide for the propagating 

radio waves (VHF or higher), and may trap them in a duct parallel to earth’s surface. To 

identify trapping conditions, a modified index of refraction M is applied, accounting for 

an index of refraction gradient that would lead to a ray with radius equal to the earth’s 

radius, being 

 6
e( ) ( ) ( / ) 10 ( ) 0.157 M z N z z r N z Z= + ⋅ = +  (3.6) 

where re ≈  6,400 km, and Z is the height about the surface in meters. 
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Positive N gradients will produce refraction upward (subrefraction), and negative 

gradients, downward. For practical purposes, M units are more useful because it is easier 

to determine the occurrence of ducts. When dM/dz = 0, the ray paths will have the same 

earth’s curvature, so a trapping layer exists wherever dM/dz < 0. Therefore, this value can 

be considered the upper limit for ducting conditions. The values and regimes for M and N 

profiles are numerically compared in Table 2. 

 

Refractive condition dN/dz 
(N units/km) 

dM/dz 
(M units/km) Radio horizon 

Subrefraction 0 < N 157 < M Reduced 

Normal -79< N < 0 78 < M < 157 Standard 

Superrefraction -157 < N < -79 0 < M < 78 Increased 

Trapping N< -157 M < 0 Largely Increased  
Table 2. Comparison of N and M gradients for refractive conditions 

The upper boundary of a duct will always be the top of the trapping layer. In the 

bottom, it can extend to a lower layer where reversed gradients may be found, forming 

then an elevated duct, or all the way down to the surface, then called a SBD. 

The minimum trapping frequency fmin depends on the thickness of the duct d, 

which is equivalent to the height of the top for a SBD, also known as Z*, in the case of 

Evaporation Ducts (EVDs). Although not a hard limit, frequencies below that value are 

less likely to be trapped, and it can be calculated with the empirical relationship 

(Davidson, 2003, p. 3-19): 
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Ducts are tactically significant, not only because RF systems may achieve longer 

ranges than expected, but there may also be “holes” where no signal will be present. RF 

waves, like the optical, can be prevented from propagating in some spaces creating a 

shadow effect, which severely limits the detection of targets in the area immediately next 

to the trapping layer because of the shadow effect. Although some scattering and 

diffraction can also be present, this can happen when the detecting system (such as radar 

or ESM) is above, below or in the trapping duct, and the target to detect is in a different 
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relative position, that is below, above, or out of the duct respectively, depending on the 

duct (layer) type occurrence. Therefore, for operational purposes, it is essential to 

determine the layering structure, the existence of layers and ducting, and if so, their 

thickness and heights.  

As explained previously, this can be easily done by determining the M gradients, 

which can be obtained by 

 1 1 1 1124.6 km 1.57 km K 4.5 km mb
dM dT de
dz dz dz

− − − − ≅ − ⋅ +  
 

 (3.8) 

This equation shows that, for a trapping layer to exist there must be large positive 

T gradients, and/or negative humidity gradients. Although such conditions can exist in 

any level of the troposphere, normally the largest gradients are achieved in the top of the 

Boundary Layer (BL). This is usually about 100-200 m from the surface, because of the 

strong mixing of water vapor and temperature profiles (either thermally or wind 

generated), so elevated ducts are commonly expected at that level. Additionally, ducts 

can be created and/or enhanced by subsidence (since the upper air parcels are dryer and 

raise their temperature adiabatically when descending, contributing both to increase 

dM/dz, and thermal inversions (for example, due to the cooling of soil during the winter 

nights).  

However, ducting conditions are more likely above the oceans and other large 

water bodies since the water vapor source produces high HR values at very low levels (in 

which case they can create an known as evaporation duct EVD, sometimes up to 100% 

just above the surface.  

On the other hand, some synoptic patterns can produce subrefraction. This is 

likely to occur in low level thermal inversions within a fully saturated layer, such as the 

advection of warm saturated air over cold waters, and can be strong in the warm sector of 

developing frontal systems. In those cases, there may be a reduction in the radar horizon, 

and significant probability of fade outs related (Goldhirsh et al., 1994). 
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Ducting conditions can be significantly different over the ocean than those over 

land because of diurnal heating, turbulence, and water vapor sources. Therefore, to 

analyze the feasibility of layering conditions in any specific area, there are several 

relevant factors involved that must be assessed, such as water surface temperatures, 

synoptic patterns (for example, the presence of high pressure air masses, and absence of 

low pressures associated with convergence), coastal breezes, and cloud patterns (in this 

case, looking for evidence of potential layering, such as strong negative gradients of 

humidity at the top of low level clouds). 

C. VARIABILITY AND MEASURABILITY OF METOC FACTORS 

As discussed, refraction of VHF/UHF/Microwave frequencies is primarily 

affected by the vertical gradients of pressure p, temperature T, and water vapor WV, 

which can by accounted for by the partial vapor pressure e. Since only the troposphere 

(usually heights below 10 km) shows significant gradients for these parameters, and the 

main interest of this study is surface surveillance and a ships’ self defense, it will focus 

on the propagation anomalies for radar bands in the lower atmosphere. 

To relate those variables with the n index, Deybe derived the equation 
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where ? accounts for the density of air, A is the Avogadro’s number, M is the molecular 

weight, a is the polarizability coefficient, µ is the permanent electric dipole movement, k 

is Boltzmann's constant and T is absolute temperature (in °K), 2 fω π=  (being ?  the 

frequency of the external field), τ  is the time required for external field-induced 

orientations of the molecule to return to random distribution, and 1i = −  (Davidson, 

2002, pp. 3-6, 3-7). 

It shows that dependence on frequencies above 100 GHz is negligible because 

1iτ = . For frequencies between 100 MHz and 80 GHz, the refractivity N can be 

computed by the equation 

 5
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 (3.10) 
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In the atmosphere, the most significant changes of N occur in the vertical 

dimension, and the degree of refraction is related to N gradients, rather than the absolute 

values, so using the standard gradients for P, e and T, this expression can be derived to 

be: 

 1.27 1.57 4.5 km .
dN dP dT de
dz dz dz dz

−       = − +            
 (3.11) 

It gives approximate values of dN/dz = -40/km, with typical values for N between 

300 and 400, with approximately 315 as the normal value according to the ITU, under a 

US standard atmosphere of 15°C at 45°N (Skolnik, 2001, p. 499), but this is clearly not 

the case for the Northwest of the Caribbean Sea. 

One important implication is that for cold air masses (low T values) the 

contribution of water vapor is also relatively small because, even when saturated, the 

partial vapor pressure is small. On the other hand, the direct relationship between the 

temperature of warm air masses and their ability to hold more water vapor has a stronger 

influence in the refractivity gradients. Thus, anomalous refraction is more likely in 

maritime tropical air masses because of their larger water vapor contents. 

In principle, the propagation of EM waves through the atmosphere and its 

anomalies could be properly evaluated if the exact composition of the atmosphere along 

the path of interest would be determined. Those measurements must be both precise and 

time frequent enough to ensure that they truly represent the atmosphere intended to be 

described. 

However, in the littoral environment, the parameters used to predict the 

propagation patterns are highly variable because of differential advection of horizontal 

contrasts, and coastal wind circulations. Despite the fact that they can radically change in 

a few hours, the availability of data sources can limit its analysis to a day-to-day basis. 

Thus, for shorter terms evaluations, the operational problem is how to determine 

effectively when and where layering conditions may exist. 

There are basically two methods to gather data for determining refractivity 

profiles: radiosondes (with several variations, such as dropsondes, and rocketsondes), and 
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refractometers. The latter is very precise, but too costly, and not operationally as suitable 

as the former methods might be. On the other hand, evaporation ducts cannot be easily 

detected by radiosondes. Their typical vertical resolution is about 50 m, and the strongest 

surface gradients are below that, so the radiosonde data smoothes them (if detected) 

because it cannot resolve them, thus misleading the predictions.  

In any event, these evaluations are mostly made under the assumption of 

homogeneity of the atmosphere, that is, the data gathered at the monitoring stations is 

considered also valid for the ship’s location. Yet this is seldom true, because the 

environment can present highly variable characteristics that can compromise the results 

of those systems. Some modern warships have implemented automated data collection 

platforms, including the use of rocketsondes and floatsondes when required, to 

continuously sample the environment so they can provide high resolution data for the 

computer assisted TDAs to predict refractivity conditions. 

Anyway, this can only be done for the local operation area of the ship, and further 

research of remote sensing options is still required (Whalen, 2002). In the horizontal 

dimension, there may be significant differences between sea and land profiles, but such 

profiles can also change greatly over time. Therefore, both spatial and time resolution of 

data might be improved by using data from other platforms, such as buoys, surface 

stations, other ships, satellite derived data, and eventually, the outputs of computer 

models. 

Previous radar propagation studies have usually assumed independence of the 

azimuth direction, unless the radar ranges are very large. Since ducting and abnormal 

refractivities can normally be associated with stable conditions, while for the horizontal 

gradients to be significant there must be certain turbulence and unstable conditions, it 

seems to be a reasonable assumption. Nevertheless, for this assessment to be accurate, it 

assurance is needed that the horizontal gradients of T and WV are not significant, and 

when the area of interest includes the shore line and strong local effects (such as 

orographic influences and sea-land breezes), that homogeneity cannot be taken for 

granted, particularly for LW purposes. 
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IV. SCOPE AND APPROACH 

This study is aimed at evaluating the effects of meteorological METOC factors on 

the expected performance of EW systems against low detectable targets in a specific 

tropical littoral region. To evaluate the EM propagation, the relevant characteristics of 

climate and weather in the area of interest and their variability are presented. Then, they 

are used to define three case studies, framed on a short term (day to day) basis with 

respect to different influencing weather patterns with available data for he year 2003. 

Further, it analyzes the applicability of the obtained results from atmospheric propagation 

models for LW operational purposes in a warm water environment. 

A. EVIDENCES OF DUCTING AND ANOMALOUS EM PROPAGATION 

As previously discussed, evaporation ducts are extremely relevant in EW, because 

the relative location of the target and the radar antenna can be crucial for the 

enhancement (or prevention) of detection.  

It was also shown that the minimum trappable frequencies are related to the duct’s 

thicknesses. Ducting conditions are more persistent over the warmer subtropical and 

tropical oceans than those over land or in high latitude ocean storm track regions because 

of the characteristics of their associated air masses. Previous studies (Ortenburger, 1973) 

produced ducting statistics for various areas of the world, showing the Tropical Eastern 

parts of Pacific and Atlantic Oceans, upper Indian Ocean and the Persian Gulf as the most 

prevalent ducting regions. However, there is climatological data that shows the average 

conditions for the Eastern Caribbean with evaporation duct heights (Z*) from 10-24 m for 

about 30% of the time, and up to 30 m or more for almost 20% (Davidson, 2003, p. 5-9). 

This happens mostly because the warmer sea surface temperatures enhance the capability 

of adjacent air masses to hold water vapor. 

The existence of layering conditions aloft can also be directly associated with the 

characteristics of air masses in the tropics and their interactions; for example, when 

tropical maritime air masses with moist lower levels and dry overlying air occur; or when  
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continental air masses, certainly dry, flow out over the cooler water surface so they 

present a thermal inversion and associated dry layer in upper (not necessarily too high) 

levels. 

The influence of land-sea breezes can increase the duct thickness, although their 

interaction with major synoptic and mesoscale events and their associated features may 

clearly modify the regular propagation patterns. This is significant because the range of 

affected frequencies will typically be from X (I/J) band (10 GHz), down to S (E/F) band 

(3 GHz) and lower, which include the frequencies normally used by shipborne radars for 

tracking and surveillance, respectively, and their detection capabilities can thus be 

severely modified. 

B. GEOGRAPHIC LOCATION 

The area of interest for this study is the Yucatan Channel, due to its strategic 

importance and relevancy of the inherent METOC scenarios in its geographical location. 

This is a passage 190 km (105 nmi) wide between Cuba and the Yucatan Peninsula, 

connecting the northwestern extremity of the Caribbean Sea with the Gulf of Mexico. It 

represents a high strategic value area because of the intense air and marine traffic 

converging on it; therefore, maritime interdiction and law enforcement operations are 

very important. 

From the METOC point of view, this region has several unique geographical 

features. It is a region around 20°N (between Marsden Squares 45 and 81, from 85°W to 

87°W), bounded by the Highlands of Central America in the South, and the Gulf of 

Mexico in the North. It is under the influence of the oceanic subequatorial current, with 

an annual average Sea Surface Temperatures (SSTs) above 27.5°C (GMCA, 2004) and 

the permanent Trade Winds, as well as the seasonally migrations of the intertropical zone 

of convergence (ITCZ), weather fronts, and tropical cyclones. 

C. CLIMATOLOGY 

Most of the available regional METOC studies address statistics for the Tropical 

Atlantic and Gulf of Mexico. Sometimes they refer specifically to the Caribbean Sea, but 

seldom to the Yucatan Channel. Since it is a boundary between the last two major 

regions, some climatological descriptions may apply in general, yet the variability and 
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local features differ from each other. For example, the Caribbean is supposed to have the 

best weather in winter, with rare gales, very good visibilities, and very infrequent 

showers (NAVAIR, 1985). On the other hand, in the Gulf of Mexico (near the area of 

interest) the winter is characterized by the incidence of many successive cold fronts, with 

high pressure air masses and variable winds commonly shifting from South and 

Southwest, to strong gales from North and Northeast after their pass. 

According to the Köppen classification of world’s climates, the Yucatan 

Peninsula is a “tropical wet-and-dry” region (Ahrens, 1994). The total rainfall fluctuates 

widely from one year to the next, usually from 100 cm (40 in) up to about 200 cm (80 in). 

There is a dry season where the monthly rainfall is less than 6 cm (2.3 in) for at least two 

months during the winter under the influence of subtropical highs, while during the 

summer, slow moving shallow lows that pass through the region enhance heavy 

precipitation, mostly in the form of showers. In contrast, Central America’s annual 

averages range from 200 to 600 cm (80 to 240 inches), with the highest rates in the 

cloudy season from June to October, when sky cover equal to or higher than ¾ is 

observed about 18 to 24 days per month. The least cloudy months are March and April, 

with skies overcast approximately six to eight days (NAVAIR 50-1C-543, 1985). 

Temperatures and humidity also have large variations with time, normally more 

over the course of the day than they do on average over the year. For example, relative 

humidity reaches 80-90% during the early morning hours throughout the year, with the 

highest values often occurring during fall and winter, and the lowest during spring. 

During the afternoons, those values fall into the 70% range. During the winter season, the 

maximum daily average of 30-32°C (86-89.6°F) can drop during the night to a minimum 

of 20°C (68°F) in the early morning, and down to 15°C (43°F) in the lowlands of Central 

America because of the combined effects of intrusions of cold dry air from the North and 

clear skies, allowing rapid radiational cooling (Williams et al., 1989). During the spring, 

the noon sun is higher, and the greater surface heating can easily produce temperatures 

above 38°C (100°F), creating hot dry conditions, that will be attenuated by cloud patterns 

and rain during the wet summer season, followed by a similar pattern in fall (Ahrens, 

1994). 
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Trade Winds keep a well mixed boundary layer with large positive temperature 

and negative humidity gradients on top, called the Trade Wind inversion. This is 

expected to be at high levels in the western part of the oceans (up to 4,000-6,000 ft., 

before dissipating), so it would not be a significant factor for low level layering in the 

Yucatan Channel. The existence of surface ducts must be related to other issues, although 

the trade winds can play an important role when interacting with local features. 

In the low latitude tropics, streamlines of wind field contain the most information. 

This arises because of small gradients of pressure and low Coriolis acceleration, so 

streamlines and isotachs are a key in tropical analysis (Jeffries et al., 1992, p. 28). 

Dominant winds are normally from the East, regularly disturbed in some degree by the 

more defined easterly (tropical) waves, and more clearly by northern winds associated 

with cold fronts from October through April. 

1. Fronts 

Frontogenesis is usually associated with extratropical cyclones in higher latitudes, 

but during the winter, cold fronts do extend to lower latitudes. They produce big 

horizontal gradients of T, P, and HR, as well as weather features that can be associated 

with some refractive conditions, such as cloudiness, fog, or rain. 

When a front approaches, high pressure and associated subsidence after their pass 

are very likely to produce layering patterns. Dynamics on cold fronts are expected to 

disrupt stability patterns just ahead of the front line and no layering can be observed. Yet, 

the low level through is associated with an upper ridge, which can produce strong 

inversions because of subsidence in the adjacent areas behind the front. It is difficult to 

determine an exact number of expected “northers” in the region, but there are estimates 

of about 30-40 events per year (Williams et al., 1989, p. 1-27). On the other hand, warm 

fronts are more related to stable conditions, so the thermal layering should also be 

analyzed to find probable subrefractive conditions, because of the prefrontal “steady” 

conditions of warm and moist. 
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2. Tropical Cyclones 

Easterly waves affect the region with the occurrence of clouds, showers, and 

thunderstorms, most frequently during summer and fall. They are a significant source of 

rainfall for the Caribbean, and if unstable enough, they can develop into tropical 

cyclones. 

Tropical cyclones are normally a threat from June to November, with a higher 

probability in June and July in the Gulf of Mexico. By August, there is a chance of 10-

20% having a tropical storm or hurricane, most likely near the Yucatan Channel, which 

increases during the fall to 15-25% probability of a hurricane from September to October 

(NAVAIR, 1985). 

Based on statistics from 1887-1955, in the North Atlantic, there is an average 

incidence of 7.5 cyclones per year, with 3.8 of them reaching hurricane intensity although 

more recent statistics during the past 34 years of data indicate an average of 9.8 cyclones 

(Asnani, 1993, p. 740). The storm paths tracked by the National Hurricane Center of 

Miami, Florida during the last ten years, show 21 cyclones in the Yucatan Channel: four 

tropical depressions, nine tropical storms, and eight hurricanes. 

Tropical cyclones usually last only a few days, so their effects are hardly reflected 

in the climatological databases, but they are extremely important in the weather 

conditions for the area. Despite the relatively short duration, the severity of their effects 

may clearly affect the EM propagation characteristics in operationally critical moments. 

They can be associated with up to 5°C of cooling the SST by upwelling and wind 

enhanced evaporation after their pass, as well as the relative drying of air near the surface 

due to associated subsidence out of the center, going from nearly 100% in the cloud walls 

around the eye, to about 75% in a radius of nearly 90 km, as well as beyond 300 km from 

the center in a mature hurricane (Asnani, 1993, p. 786). 
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Figure 4.   Satellite images showing tropical storm Claudette in the period 10-12 July, 

2003 (After NOOA, Tropical Prediction Center, 2004) 

3. Local Features 

When no major synoptic features are present, the general synoptic conditions are 

rather smooth (except for tropical cyclones incidences), and the local airflow patterns 

become more important. This is expected to occur during the spring and fall, generally 

considered as “transitional seasons.” 

Periodic daily processes and circulations on the local to mesoscale dominate the 

regional climate and weather in the tropics. In the time scale of a day or less, horizontal 

contrasts in the surface heat budgets and thermal tides yield vigorous circulations which 

dominate the diurnal cycle of cloudiness and rainfall. Diurnal wind reversals can extend 

up to 100 km inland. Although not sea breezes in the classical sense, their interactions 

with other local circulations and major synoptic features, such as the trade winds, can 

result in complex changing features (Hastenrath, 1985, p. 6). 

Local wind patterns can be related to diurnal land-sea breezes. The Yucatan 

Peninsula is a large flat area, with low vegetation, but the shape of the peninsula 

enhances the divergence-diurnal occurrence associated with land-sea breezes, and this 

can be expected to enhance the layering conditions above the Channel waters. Under 

extreme conditions, the ducts might be very strong, and the relative location of the EW 

systems can prevent the detection of small targets. 

D. METOC DATA SOURCES 

Previous studies have provided climate values for this area, and they have been 

analyzed in detail because of its importance to economic and political activities. 
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However, operational METOC data collection platforms are rather heterogeneous with 

regard to coverage, and their databases are not necessarily compatible, which complicates 

the scenario definition.  

For the purposes of this study, the representativity of upper air soundings is very 

important, since regions of extreme conditions with important operational implications 

may not have profiles to examine the effect of METOC on EW. Additionally, 

radiosondes do not have enough resolution to describe evaporation ducts, so detailed 

surface data of air temperature, humidity (WV content), pressure, wind, and SST is 

required; hence the importance of having reliable local surface data (ideally from buoys) 

to describe the actual conditions at sea, and the lower atmosphere in the area. 

There are no operational moored buoys in the area, and even though the intense 

maritime traffic provides several ship reports, these are not periodical and their SST 

readings not very reliable. As a consequence, it is not easy to identify offshore weather 

patterns such as diurnal breezes, and hourly changes in temperature or humidity. Since 

those are important factors to describe atmospheric propagation characteristics of EM 

waves, this study also addresses the feasibility of complementing data from alternative 

data sources, and the added value of such data when used with a TDA in an operational 

environment. 

E. APPROACH 

1. Data Bases 

The area of interest has three radiosonde stations: Grand Cayman Island (WMO 

Id. 78384), and the International Airports of Cancun (WMO Id. 76595) and Belize 

(WMO Id .78538). Although all of them are coastal, their local conditions are not similar, 

so the resulting evaporation ducts were radically different. In addition, they only produce 

soundings data once a day, at 12 Z, which prevents the possibility of identifying diurnal 

effects. 

The radiosonde station of Cancun (Figure 4) was chosen for this study because of 

its convenient position for operational purposes in the Yucatan Channel, low elevation 

above MSL and proximity to the coast line, as well as the availability of surface data in 

the area from weather stations of the Mexican National Weather Service Automated 
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Weather Stations Networks in Cozumel, Cancun, and Sian Kaan, and from the Mexican 

Navy (in Isla Mujeres), which also has a tidal station in Cozumel that provided some 

actual values for SST. 

 

 
Figure 5.   Area of interest and location of stations 

All these surface stations are automated, so they provide high accuracy and 

temporal resolution, but this also presented some drawbacks. They relay their data to 

Mexico City via satellite telemetry which caused several gaps in the databases. Besides, 

all this was raw data, never validated or subject to further processing for quality control, 

so it was individually evaluated by comparison between stations (when available). 

Several batches of suspicious data from those databases had to be discarded and a more 

rigorous statistical evaluation was not possible. 

Despite these problems, there was excellent agreement between stations in the 

overall trends for the gradients shown, which allowed extrapolating some values when 

needed for each case. There was also a very good agreement between the averages 

calculated from the available data and the extensive climatological database from the 

U.S. Navy “Global Marine Climatic Atlas” (GMCA, 2004). This atlas was derived from 

data collected primarily from ships for the period from 1854 to 1997, which was 

processed for quality control and collation from the Comprehensive Ocean and 
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Atmosphere Data Set (COADS) distributed by the National Center for Atmospheric 

Research (NCAR). This provided a good guidance for supporting the approach used in 

each case study and the validity of the outcomes. 

2. Propagation Model 

The Advanced Refractive Environment Prediction System (AREPS) was 

developed by the Atmospheric Propagation Branch at the Space and Naval Warfare 

Systems Center, San Diego. It uses the Advanced Propagation Model (APM) to calculate 

range-dependent EM system propagation loss within a heterogeneous atmospheric 

medium, where the index of refraction is allowed to vary both vertically and horizontally 

while accounting for terrain effects along the path of propagation. 

In this study, AREPS was used to evaluate individual responses to changing input 

parameters, according to observed environmental conditions. The required input sets 

were completed with data from several coastal weather and tidal stations, ships and buoys 

reports, when available. 

3. AREPS Statistics 

AREPS also includes numerous statistics of tropospheric ducts and super-

refractive layers compiled by GTE Sylvania, under contract by the Department of 

Defense. They are the result of a large-scale analysis of a five year database with 

approximately three million worldwide radiosonde soundings from 921 observing 

stations (Ortenburger, 1985). Only soundings which included surface data were analyzed, 

but the statistics show monthly occurrences for elevated ducts and for SBDs, not 

necessarily evaporation ducts (EVDs). 

For the surroundings of the Yucatan Channel, there are statistics only from the 

radiosonde station of Merida, Mexico (WMO Id. 76444), which is an inland station about 

20 miles South of the nearest coast, and 11 meters above mean sea level. They show 

more SBD occurrences from July to October, with a maximum of approximately 30% of 

the time in September (Figure 5). When that analysis was made, soundings from Merida 

were available twice a day, at 00 and 12 Z, so the statistics could be split into day and 

night occurrences (about 1800 and 0600 hrs, Local Time). 
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Figure 6.   Statistics of SBD monthly occurrences for Merida, Mexico (WMO Id. 

76444) from AREPS 

It can be seen that evening ducts occurred much more frequently in August and 

September (up to 50% of the time), and significantly less in the mornings, particularly in 

January, July and August. These are evident seasonal and diurnal signals, which may be 

important for operative purposes since the METOC factors involved can induce large 

changes in the ducting and layering profiles, modifying the EM propagation patterns. 

4. Climatology of Evaporation Ducts 

Evaporation ducts and their effects in surveillance and detection operations in the 

maritime surface are very important for the purpose of this study, but AREPS does not 

have climatological data for the area of interest. Thus, a separate analysis was done with 

monthly surface climatology data from the GMCA and using the NPS model (included in 

AREPS 3.3) to build the refractivity profiles of April, December and July (Figure 6). 

 
Figure 7.   Evaporation duct profiles for April, December and July, calculated by 

AREPS with monthly climatological data from the GMSA 
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The resulting profiles showed EVDs with average values of Z* about 12.6 m for 

December, and 16 m for both April and July, which may be expected to produce 

extended ranges for frequencies above 4 and 8 GHz respectively. The relationship  

between the Z* values, SST and the Air-Sea temperature differences was also evident, 

such as the thinnest EVD with the coolest SST and the most negative temperature 

difference in December, as expected, which is shown in the Table 3. 

 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Air Temp 24.4 24.4 24.3 25.7 27.17 28.11 28.6 28.4 27.84 26.4 24.7 23.1 26.09 

SST 26.1 25.8 25.2 26.2 27.55 28.37 28.9 28.8 28.48 27.5 26.2 24.9 27 

Air-Sea Temp. Diff. -1.7 -1.4 -0.9 -0.5 -0.38 -0.26 -0.3 -0.42 -0.64 -1.1 -1.5 -1.8 -0.91 
 

Table 3. Values for Air-Sea Monthly Mean Temperatures difference, from the Global 
Marine Climatic Atlas 

This proved to be an interesting consideration, whereas those are results for 

monthly averages from long term climatological data, yet the local factors, diurnal 

variability, and synoptic features are still expected to play a major role in the variability 

of the propagation characteristics, as previously discussed. 
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V. RESULTING EM PROPAGATION PROFILES 

A. CASE STUDY 1: SPRING SEASON 

Spring is considered a “transitional” season, that is, with low gradients of the 

meteorological variables and not much variability can be expected in the refractivity 

profiles, since there are no significant weather features other than local small scale effects 

(Figure 7).  

 
Figure 8.   Synoptic Analysis at surface level from 19-21 April, at 12 Z (After NOAA 

Tropical Prediction Center, 2004) 

The overall conditions for sea and air traffic appear to be optimum, as well as 

those for naval operations, such a scenario may be thought of as an ideal one, useful to 

get a frame of reference with which to assess the modifications when abnormal refractive 

profiles are found, and compare them with those for a standard atmosphere (Figure 8). 

 
Figure 9.   Normal propagation patterns for L, S and X band radars under a standard 

atmosphere 
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Nevertheless, a more careful approach showed that the existing atmospheric and 

oceanographic conditions, such as warmer air and SSTs (refer to Table 2 in the previous 

chapter), could be related to enhanced ducting and trapping conditions, so the RF 

scenario might be not as ideal. Electronic surveillance performance and situational 

awareness may be unknowingly modified, and a more precise assessment of the effects 

would then be needed. 

1. Diurnal Changes 

In general, there were no major changes in the thickness of the observed EVDs, 

with average Z* values near the climatological mean. However, the actual SSTs 

registered were nearly 1.5°C above the mean of 26.7°C, which resulted in slightly thicker 

ducts than the “normal” mean value of 16.4 m. During the three day period of 19-21 

April, there was an overall diurnal variation of Z* about ±  2 to 3 meters, with maximum 

values up to 17.8 m in the evenings. These ducts are very likely to modify the 

propagation of frequencies above 4 GHz with extended ranges for transmissions below 

the duct top, but also reducing the detectability of targets just above this duct. 

A similar effect in the detection ranges was also produced after the expected 

thickening of the EVD in the evening of 20 April (at 1800, Local Time), as shown in 

Figure 9. This was observed only when the radar antenna was pointing offshore (true 

bearing 135°), and not inland (true bearing 270°), because AREPS was able to suppress 

the EVD over the ground effectively, thus making an obvious difference between waves 

propagating over the sea and over land (Figure 9). 

 
Figure 10.   Expected propagation patterns for an S band radar pointing inland (left) and 

offshore (right) with surface data for 20 April at 24 Z (1800 LT) 
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2. Changes in Antenna Heights and Radar Frequencies 

In the evening of 20 April the EVD height was increased more than 3 m from the 

12 Z value (to 17.6 m), which was now expected to modify the propagation of 

frequencies above 4 GHz, although this height is also similar to usual antenna heights for 

many naval radars. When the antenna heights were increased from 10 to 20 m, the 

resultant ranges were also increased due to extending the radar horizon, but this was 

observed to be really significant only for the X band radar (higher frequencies), whose 

detection ranges at surface levels where almost doubled from 30 to about 60 km. 

It was also noticed that the increase of Z* to more than 17 m in the evening, was 

large enough to show its effects on the S band when the antenna heights were changed. In 

this case, however, the most evident difference was not in surface range increases (which 

were only about 10 or 20 km), but reducing the overall achievable range in the lowest 

lobes with respect to those with a standard atmosphere. 

The resulting profiles proved to be particularly sensitive to the different 

combinations of frequencies and antenna heights, so the outcomes are not easy to predict. 

Thus, only long term runs, with more accurate data, may produce a reliable guidance for 

operational predictions of the achievable performances under such conditions. 

3. Day to Day Changes 

On a day-to-day basis, a more important variability was observed when the 

appended profiles showed the evaporation ducts embedded in significant SBDs. Since the 

synoptic variability of the M gradients were actually small, the observed variability in the 

bottom part of the profiles was more “sensitive” to the evaporation duct or surface data. 

As a consequence, the resulting SBD may be largely variable, such those from 19-21 

April displayed in Figure 10, where SBDs of 50 m exist at the beginning and end of a 48-

hour period above a persistent evaporation duct of nearly 15 m throughout. If these 

profiles are proven to be realistic, then their effects in the propagation patterns can be 

severe for almost any system using frequencies above the L band (1 GHz). 
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Figure 11.   Resulting profiles from appending surface data to the 12 Z radiosondes for 

19-21 April, respectively 

Figure 11 shows how those SBDs were thick enough (60 and 87 m, respectively) 

to significantly affect most radar frequencies with dramatically increased surface 

detection ranges, well beyond 180 km (100 nmi) within these ducts, while also severely 

degrading the detection capabilities in the layers between 100 and 400 meters (down to 

less than 30 km), where ranges between 60 and 90 km would be achieved under a 

standard atmosphere. 

 
Figure 12.   Propagation pattern for a L band radar, with 12 Z profiles for 19-21 April  

For MFRs, this may be a serious limitation in detecting low flying aircrafts, 

combined with a false “awareness” of the operators produced by much better 

performances on surface detection, or greatly enhanced clutter that may lead to increase 

the filtering, hence reducing the sensitivity of the radar to detect small sea skimming 

targets effectively. Since the energy of the transmitter is severely prevented from 

1_ 

Ir avtfffttrtta  Umiii SAcefeKtM  DM   &I 

Inn l-*h'lly> 

*H     ■. 



39 

propagating through those areas, there is also a large limitation in the detection 

capabilities of passive ESMs, and they cannot detect any transmitter at those frequencies 

in large areas where they normally could. 

One interesting effect appeared in the X band radar when scanning above land 

(true bearing 270°), as shown in Figure 12. In this case, the tracing of rays showed many 

narrow lobes escaping from the SBD in a somewhat random manner, apparently because 

AREPS neglects the EVD effect inland. They created a wide spread area of “noisy” 

detections, which may be confusing for the operators and/or automated systems, since 

normally there would not be any signal echoed from that area, and the signal processors 

may be troubled by such effects as well. Whether or not this is a feasible result should be 

proven under more rigorous and precise data, with better resolution in time and space. 

 

 
Figure 13.   EVD effects for an X band radar on 19 April, at 12 Z, when scanning inland 

(left) and offshore (right) 

B. CASE STUDY 2: COLD FRONT CONDITION 

From October to April, the mean monthly value for SST goes down to 24.9°C, but 

the air temperature becomes even cooler, so the ASTD can reach maximum values of 

almost 2°C (refer to Table 2 in Chapter IV). Further, this region is frequently affected by 

cold fronts with strong winds and high pressure air masses, which repeatedly appear in 

the area with only a few days of separation. Although their occurrence is highly 

predictable, these systems can move fast enough to sweep an area such as the Yucatan 
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Channel and disrupt the local refractivity profiles in a matter of only a few hours, so the 

radiosonde data available every 24 hours is not enough to describe the changes in such 

profiles. Therefore, a better understanding of their effects would be highly beneficial to 

optimize the performance and use of EM equipment. 

The climatological profile for December (Figure 14) indicated a normal Z* of 

12.6 meters, which can be expected to produce extended surface ranges for frequencies 

roughly above 8 GHz. The available data for the period from 23-26 December showed 

actual SST nearly 1.5°C below the monthly mean, which was reflected in thinner ducts 

with lower Z* by as much as 3 meters, and the expected band of affected frequencies 

would then be higher (only X band or above). 

 
Figure 14.   Climatological profile of refractivity for December for low levels, after  

Surface analysis showed a front cold reaching Cancun on 25 December (Figure 

14). Although the Skew T plots of the daily radiosondes at 12 Z (Figure 15) and the 

surface data did not clearly show the exact moment when the front passed, they gave 

some evidence of its effects as the system moved over the area. 
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Figure 15.   Surface Analysis for 23-25 December at 12 Z, showing the pass of a front 

cold over the Yucatan Peninsula in less than 24 hours (After NOAA 
Tropical Prediction Center, 2004) 

 
Figure 16.   Skew T plots of the radiosonde data for 23-25 December, at 12 Z, showing 

the pass of a front cold (After NOAA Forecast Systems Laboratory, 2004) 

To analyze its effects, surface data was appended to the radiosonde data, and then 

used to build the refractivity profiles. It must be recalled that this might produce 

unrealistic results about the presence (or absence) of actual SBDs because of using 
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outdated upper air data, particularly for the evening profiles. Instead, they should be used 

as a reference to evaluate the variability of the profiles in the lower levels. For example, 

the observed evaporation ducts were thinner than 10 m (Table 4), so a reduced 

detectability of low surface targets, such as small boats or sea skimming missiles may be 

expected from radars with antennas at normal heights of 15 m. 

Date Z* Top of SBD 

23Dic2003 19.4 68 

24Dic2003 6.9 * 

25Dic2003 9.0 110 

26Dic2003 3.4 172 

27Dic2003 18.3 85 

 
Table 4. Heights of EVDs (Z*) and SBDs during 23-17 December, from appending 

radiosoundings and surface data with the NPS model included in AREPs. 

Although there was an evident reduction in the Z* value between 23-24 December 

(from almost 19.4 m, down to 6.9) before the depicted arrival of the front, the appended 

profiles shown in Figure 16 indicate thick layers with superrefractive profiles. As 

mentioned previously, low M gradients may easily cause AREPS to artificially detect (or 

neglect) SBDs, depending on the surface data appended, so these results must be viewed 

with some caution. 

 

 
Figure 17.   Refractivity profiles from AREPS, after appending surface data to upper air 

soundings for 23-25 December, at 12 Z 
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An important example was 23 December, when the propagation patterns showed a 

strong effect in the lower levels because of a SBD with a top height of 68 meters, thick 

enough to trap even the L band radar waves. As a consequence, there was a very 

extended detection range from the surface to the top of the duct of more than 180 km, 

altogether with significant reductions just above the duct, with respect to the normal 

pattern (Figure 17). Is also important to note that in this case, the EVD top height was 

slightly less than 20 meters, so changing antenna heights enhanced or reduced such 

effect.  

 
Figure 18.   Propagation patterns for an L band radar on 23 December at 12Z, with 

antenna heights of 10, 15 and 20 m 

As expected, the strongest effect was noticed when the height was 15 meters, that 

is, just below the top of the EVD (Z*), which was strong enough to trap the lowest lobes 

of the radar pattern. Higher antenna positions (15 and 20 meters) appeared to prevent, to 

some degree, these detection reductions above the top of the duct, whereas the normal 

refraction pattern does not anyway allow a complete detection in the whole area.  

On 24 December, one day before the front reached this area, the M gradients in 

the upper levels were severely reduced, as well as the heights for the top of EVD, with Z* 

down to less than 7 meters as shown in the previous graph, with a superrefractive profile 

from the low levels all the way up to about 400 m, where there was in fact an elevated 

duct (Figure 18). The resulting propagation patterns are not very different from those of a 

standard atmosphere for the lower radar frequencies, other than surface detection ranges 

almost doubling (from 30 to 60 km) for the X band radar only, because of the thin EVD. 

ll» uM'itnni vc 
*<liiHta 
VWFiaCtrm 
LI r ^ 1 Qda > ■■■«* 
rtM "iTI IWwl*' UoiFn' 
F-i- ?1lH?IU    l>*l' 



44 

 
Figure 19.   Refractivity profile for 24 December, at 12Z, and the resultant propagation 

patterns for L (center) and X (right) band radars 

After the system passed early on 25 December, the enhanced low level mixing 

due to the strong winds associated with the front (Figure 19) appeared to reduce even 

more the Z* for the following 48 hours, but also created a thick SBD (up to 110 m and 

170 m on 25-26 December, respectively), with serious implications for the EM 

propagation profiles. On both days, the SBD was capable of trapping all the range of 

frequencies, producing again enhanced detection ranges in surface levels, while clearly 

reducing them above the duct. 

 
Figure 20.   Surface Analysis (After NOAA FSL, 2004) and Skew T plot (After NOAA 

Tropical Prediction Center, 2004)for 26 December, at 12 Z, showing the 
conditions after the pass of the front cold 

Since the evaporation duct was almost negligible, there was no evident difference 

between the offshore and the inland bearings of the antenna. The most remarkable effect 

was for the L and S bands, where the trapping SBD produced maximum detection ranges 

well beyond 200 km, but also several strong gaps without any detection at all at the 

surface and near the top of the duct. This should be a very important consideration for 
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operational purposes, since any low level target, such a low flying aircraft, small fast 

boats or sea skimming missiles would not be consistently tracked, or even worse, they 

can move along such areas completely undetected.  

On 25 December, the X band achieved the best performance since the ray tracing 

results showed an almost uniform coverage along the surface, without severe gaps 

(Figure 20), although changing antenna heights did not make any difference. 

 
Figure 21.   Propagation patterns on 25 December at 12 Z, for L,S and X band radars, 

with an 110 m thick SBD 

The observed degradation was even more dramatic 24 hours later (Figure 21), 

when a thicker SBD (up to more than 170 m) combined with an extremely low Z* (3.4 m) 

produced a very large single gap without detection capabilities from about 30 km or less, 

all the way to about 120-150 km, where the presence of a wide zone of strong detection 

may create a false feeling of confidence in the operators, if they are not aware of the 

existence of such blind zones. 

 
Figure 22.   Propagation patterns on 25 December at 12 Z, for L,S and X band radars, 

with a SBD more than 170 m thick 
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Another important fact was that the evening surface data showed some recovering 

of the EVD thickness, with Z* of about 12.7 m (very similar to the monthly 

“climatological” value), which would also yield a much lower SBD (25 m) when 

appending to the radiosonde profile. In other words, the propagation patterns just 

described would vanish in a matter of 12 hours, and only the X band radar could achieve 

enhanced detection ranges in the lower levels (Figure 22). 

 
Figure 23.   Propagation patterns for 26 December with 24Z surface data, for L, S and X 

band radars, when the SBD apparently vanished 

Despite the fact that the evening profiles may not be valid for the upper levels 

because of the lack of radiosonde data at 24 Z (1800, Local Time), the surface data gave 

evidence of the variability in the Z* values for the EVD. When the expected M gradients 

are not very strong, as in the case on 26 December (Figure 23), these can be very feasible 

results; hence the relevancy of better availability and resolution for both surface and 

upper air data when more reliable results are required. 

 
Figure 24.   Refractivity profile for 26 December at 12 Z, showing a weak M gradient 

and Z* after appending with radiosonde and surface data. 
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Finally, on 27 December, the thickness of the SBD was nearly 85 m, and the EVD 

grew back to a Z* of about 18 m, a few meters above the usual heights for the radar 

antennas in a medium size corvette or patrol boat. This may normally be expected since 

the subsidence associated with the high pressure air mass behind the front should enhance 

the layering and the EVD, so the propagation patterns would also look much like those of 

23 December, before the frontal system influenced the area (Figure 24). 

 
Figure 25.   Propagation patterns for 27 December at 12 Z, antenna heights of 10, 15 and 

20 m, SBD thickness of 85 m, and Z* about 18 m 

C. CASE STUDY 3: TROPICAL CYCLONE 

During the tropical cyclone season, according to the AREPS statistics, there is an 

apparent coincidence between the higher probability of the occurrence of ducts, the 

enhanced diurnal variability of such occurrences during the summer, and the lowest 

climatological Air-Sea surface temperature differences. 

For this scenario, the period from 9-14 July was analyzed because the Tropical 

Storm Claudette crossed the Yucatan Peninsula from the Caribbean Sea to the Gulf of 

Mexico, with its center reaching land only a few miles South of Cancun on 11 July, 

approximately at 12 Z. 

Approximately 72 hours before the cyclone approached the area, the radiosonde 

data showed smooth profiles in the upper layers; one day later, there were evident low Z* 

values of 6 to 10 meters (Figure 25), whereas the “normal” evaporation duct height based 

on monthly climatology data was 16 m, probably due to increasing winds and mixing 

ratios. 
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Figure 26.   Surface Analysis (After NOAA Tropical Prediction Center, 2004) and 

refractivity M profile for 9 July at 12 Z, nearly 48 hours before the arrival of 
tropical storm Claudette 

However, around 600 to 1,000 km away from the center of the cyclone, a 

significant superrefractive layer appeared from about 60 to more than 400 m. This was 

apparently due to the dry air subsidence associated with the outer shear line (Fujita and 

Tecson, 1973), which produced significantly extended detection ranges in those levels for 

all the frequency bands. At the surface, the EVD only affected the X band radar with 

some detection range enhancement, but no trapping was possible because of the low Z*. 

When the cyclone was between 300 and 500 km away from the area, 24 hours 

before landfall,, the M gradients were reduced, and a superrefractive appeared to build a 

thick SBD. The surface profile itself showed an apparent SBD with a top height of about 

26 m, but after appending it to the upper profile, this height was increased up to almost 

410 m (Figure 26). 

 
Figure 27.   Surface Analysis and refractivity M profile for 10 July at 12 Z, 24 hours 

before the arrival of tropical storm Claudette 
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Again, the resulting SBD radically changed the operational environment for EM 

propagation in all the radar bands. The lower lobes were strongly refracted and trapped, 

creating an extended zone of surface detection ranging between 120 and 200 km, and a 

large gap with no detections at shorter ranges down to approximately 30 km, and in some 

cases less than that, depending on the radar band (Figure 27). 

 
Figure 28.   Propagation patterns on 10 July at 12 Z, with antenna heights of 10 and 20 

m for L (left) and S (right) band radars 

The antenna height proved to be a factor only for the L and S bands, while X band 

radar was clearly affected by the direction of the antenna offshore or inland (Figure 28), 

because of the differences in the computation of EVD profiles by AREPS, which was 

previously discussed. This was very important since the surface ranges were greatly 

increased up to approximately 90 km offshore, significantly reducing the gaps without 

detection otherwise created. 
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Figure 29.   Differences in the propagation patterns on 10 July at 12 Z, for an X band 

radar with antenna height of 10 m, when scanning inland (left) and offshore 
(right) 

At this time, the propagation patterns showed radical changes, so the upper air 

profile was appended to the evening surface data as an attempt to explore the effects of 

the changes in the lower level variables in shorter periods. Regardless of the 

“artificiality” of the SBD depicted with a 400 m top height, the surface data produced a 

thicker EVD with Z* of almost 19 m, an increase of almost 10 m in 12 hours, being now 

strong enough to enhance the surface detection ranges for the S band radar as well. On 

the other hand, the antenna height was now an important factor for the X band radar, 

clearly increasing the detection range from about 40 to almost 90 km when it was raised 

from 10 to 20 m (Figure 29). 

 
Figure 30.   Propagation patterns for 10 July at 24 Z, for a S band radar at 20 m (left), 

and X band radar with antenna heights of 10 m (center) and 20 m (right), as 
tropical storm Claudette was approaching 
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The effects already discussed in previous paragraphs, seemed to be contrary to the 

expected results of reduced surface detection ranges when the antenna height was above 

Z*. However, the radar horizon was effectively increased with the antenna height. 

Additionally, at least half the radiation beams of energy transmitted from the antenna 

(assumed to have a 0° elevation in all these scenarios) could be running almost parallel 

along or below the top of the EVD, since these values cannot be taken as hard limits. 

On 11-12 July, as expected, high winds and strong mixing due to the storm 

produced very smooth profiles (Figure 30) without significant differences from the 

standard profiles, other than consistent evening increases of Z* to about 17 m, with the 

resultant enhancement of the surface detection ranges for both S and X band radars. 

 
Figure 31.   Surface Analysis (left) and refractivity M profile (center) for 11 July, nearly 

at T.S. Claudette landfall, and for 12 July, all at 12 Z 

As the storm moved away, the evaporation ducts appeared to return to their 

normal values gradually, with the 12 Z profile showing a Z* of 10.6 m on 13 July. This 

was thick enough to enhance the detection range clearly for the X band radar up to more 

than 100 km in surface, and to more than 120 km in the 400 m level. It was also clear that 

an antenna height of 20 m for the X band radar would neglect such an enhancement as 

expected, since the top of the EVD was now well below the antenna. 
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Figure 32.   Propagation patterns on 13 July at 12 Z, for an X band radar with antenna 

heights of 10 and 20 m 

Finally, on 14 July, the 12 Z profile (three days after the storm passed) was very 

similar to that of 10 July (Figure 31). Although the surface based duct did not appear, 

there was actually a thick elevated duct between 300 and 500 meters. Since the M 

gradient was not very strong, this can eventually be a realistic result. 

 
Figure 33.   Surface analysis (After and refractivity for 14 July at 12Z, 48 hours after the 

tropical storm Claudette 

AREPS may produce very different results when using the resulting refractivity 

profiles with different platforms and frequencies, and it is evident that the operationally 

implications will be very significant. As an example, a couple of days before the storm 
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approached, the lower evaporation ducts can make it very difficult to detect low surface 

targets. On the other hand, the radar capabilities for the Search and Rescue (SAR) of 

small boats and potential victims of the storm may be enhanced, in contrast with the 

Command and Control of the air assets usually employed (such as helicopters and low 

flying airplanes), which may be disrupted by the surface based ducts, depending on their 

relative positions and frequencies used. 
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VI. THE USE OF IR SYSTEMS 

The case studies in the previous chapter discussed how EW system performance 

can be modified by METOC factors, showing atmospheric refractivity to be particularly 

important for Radar and ESMs. EO/IR systems have been devised as a convenient option 

to overcome limiting factors with RF systems, particularly for passive detection and the 

tracking of potential targets. Regardless of their purpose and their inherent lack of range 

measurements, RF system major problems are clutter rejection and spectral band 

selection.  

Different backgrounds such as terrain, cloud types and sea conditions, can 

severely degrade the detection capabilities against dim targets when low signal-to-clutter 

ratios are likely to occur. Further, depending on the spectral band selected to operate, 

different threats under extreme variations in the environment will result in different 

detection ranges and performances. 

As a general rule of thumb, scattering by both molecules and aerosols is of greater 

importance in the visible, and even more so in the ultraviolet. On the other hand, 

absorption and scattering are equally important in the medium wave infrared (MWIR, 3-5 

µ m) while absorption is the dominant factor in the long wave infrared (LWIR, 8-14 

µ m). Thus, the problem appears when their performance must be assessed under critical 

operational conditions, which is usually a more difficult problem than it is for RF 

systems. 

A. MEASURES OF PERFORMANCE FOR IR DEVICES 

Despite the wide variety of designs, the analysis of EO/IR systems can be based 

on two main components, the internal hardware or components, and the external factors 

such as the transmission medium, background and other sources of noise.  

The maximum achievable range is always a concern for EO/IR devices, and this 

can be calculated in several ways. For detection of a target with certain source radiant 

intensity I by a simple single IR detecting element, it can be expressed in a form of the 

range equation similar to that for radar. In this case, it accounts for a one-way 

propagation only, which is correct for passive systems. Although somewhat 
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oversimplified, the operational parameters of the whole system can be grouped together 

to give a good insight about the general approach for analysis of EO/IR systems (Cooper, 

2003), yielding an equation in the form: 

 ( )1/ 2 1/ 2 1/ 2 -1/ 40 0 *
0 1/ 2

/ 2
[ [ [ [] ] ] ]a

  NA tD  I     DTtR D
π

ν= ∆
Ω

 (6.1) 

In this equation, the achievable range Ro is the result of four main factors. The 

first factor accounts for the intensity of the source of radiation I and the propagation 

medium, expressed in this case by the transmittance ta, or attenuation component of the 

atmosphere. The second group describes the characteristics of the optical receiver by its 

aperture diameter Do, the relationship between this and the focal length (known as 

Numerical Aperture, NA), the instantaneous field of view Ω , and the overall transmission 

factor to of the receiving system itself, which includes the optical efficiency. The 

detecting element is globally expressed by its specific detectivity D*, which is a function 

of the detector responsivity, its dimensions, and the electronic noise bandwidth. Finally, 

the fourth group involves signal processing, which in this case sets the threshold for 

detection when the voltage of the input signal equals the voltage of the system’s noise, 

with respect to the electronic noise bandwidth. In other words, the resulting range Ro will 

be such that the signal-to-noise ratio has its threshold value SNRT so the target is just 

detectable.  

However, defining the limit of detection by the signal-to-noise ratio is rarely used 

for modern EO/IR systems, since they are typically limited by contrast, not by sensitivity. 

Therefore, the SNRT criterion is usually replaced with a thermal contrast criterion 

(Minimum Resolvable Temperature Difference or equivalent). 

Spatial resolution is the ability of an imaging system to distinguish separate 

objects or parts of an object within its field-of-view. Another measure of performance is 

the thermal resolution, or the smallest temperature difference a system can distinguish an 

incoming signal from the background noise in the system.  

Sometimes thermal resolution is described by the noise-equivalent temperature 

difference NETD or the temperature variation that changes the collected flux by an 

amount equal to the noise-equivalent power NEP. Therefore, NETD gives insight into a 
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system’s ability to detect small signals in noise, depending on several factors such as 

aperture diameter, sensor band average detectivity, the number of detectors, scan 

efficiency, FOV, and frame rate (Holst, 2003). On the contrary, NETD defines only the 

temporal detector noise, and not spatially. Therefore, it is normally used only as an 

intermediate sensitivity parameter for simplification of formulations of more specific 

performance parameters. 

The most used specification parameter for FLIR systems is the Minimum 

Resolvable Temperature Difference MRTD, defined as the temperature difference 

between the background and a set of four standard bars required to make the bars just 

resolvable, as a function of their spatial frequency. Thus, as the bars become smaller, the 

required temperature difference to resolve them increases. This measure includes both 

resolution and sensitivity, and it is subjective since it involves the judgment of the human 

observer. 

Similarly, Minimum Detectable Temperature Difference MDTD is the 

temperature difference between an isolated square and a uniform background that makes 

the square just detectable, as a function of its dimensions in spatial frequency. As in the 

case of MRTD, it also involves the subjectivity of an observer. The difference between 

them is the representation of the target, which for MDTD, is a square rather than a four-

bar target (Goksin, 2000). 

As a generalization, the thermal and spatial resolution may be considered 

inversely proportional, because the thermal resolution (or NETD) can be improved by 

increasing the size of the detecting elements, so more flux will be collected by each, but 

this would degrade the spatial resolution by increasing the IFOV. Therefore, neither is a 

good measure of the overall IR imaging system performance. The single quantity MRTD, 

which is determined experimentally, measures both performance factors simultaneously 

and takes into account all the various theoretical and real-world factors that matter. 
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The atmospheric transmittance ta, which is the most limiting factor for EO/IR 

systems, strongly depends on the local meteorological conditions, as well as on the 

geometry and length of the range path. In a practical approximation, ta is written as a 

simple exponential function of the atmospheric extinction coefficient µ  in the form 

R
at e µ−= , such that: 

 [ ]
1 / 22 oR

o aR R t Re µ−= =  (6.2) 

where R is the maximum range with no atmospheric attenuation. Note that the solution 

Ro, appears on both sides of the equation, so it cannot be solved in closed form, but it can 

be numerically evaluated by several methods, by writing  

 leftR R= , and / 2oR
rightR Re µ−=  (6.3) 

Then, the simplified equation may be solved graphically by plotting both 

expressions as functions of the general range R. The intersection of the two curves gives 

the maximum achievable range Ro under these conditions (also given by 0left rightR R− = ). 

The graphical solution displayed in Figure 33 is an example of a “typical” set of 

parameters, with attenuation coefficient 0.2/km. In this case, the maximum computed 

range R is 32.36 km when the atmospheric attenuation is neglected 0µ = , so the starting 

point for Rright is 0R = . The maximum range for detection is 10.8 kmoR = , which shows 

that even a moderate level of attenuation can severely degrade the detection range, in this 

case, to almost one third (Cooper, 2003). 
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Figure 34.   Graphical solution for the maximum achievable range for a generic IR 

system, when 0.2 kmµ =  

The range equation can then be solved to evaluate the effectiveness of a specific 

design, or the feasible trade-offs when the design is changed, for example to minimize 

costs or to fit the system geometry to a required platform, while maintaining the required 

detection range. 

Although very convenient, this simple model has some major defects, since the 

target signature I (given in W/Sr) must be replaced with a function of wavelength over 

the optical bandwidth of the sensor. Similarly, the atmospheric transmittance must be 

averaged over the optical bandwidth of the sensor system along the optical path, while 

also related to the meteorological conditions, since the attenuation coefficient is largely 

dependent on wavelength, temperature and pressure, relative and absolute humidity, and 

atmosphere composition. Even further, not all the radiation reaching the detector comes 

from the emitting source outside the scene, since the atmospheric path itself can also act 

as a source of radiance. In practice, this evaluation can only be done using the appropriate 

computer codes such as MODTRAN or LOWTRAN. 

IRST systems design often regards the achievable probability of detection Pd in a 

single scan or frame, given a maximum tolerable false-alarm rate FAR and making 

several assumptions such as a specific target, background, environment, and weather. 

Range Determinstion Graph 

Rwc - Rrlgh 
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This is useful because Pd is determined by the threshold of signal-to-noise ratio SNRT, 

while the FAR is defined by the system’s noise level (Accetta and Shumaker, 2001). 

B. PROPAGATION ISSUES FOR EO/IR WAVES 

It is clear that effective predictions of performances are critical to obtain the best 

solution, but despite the technical improvements in IR sensor technologies, the 

complexity of the environmental limiting factors makes such predictions much more 

difficult than for RF systems. 

The atmosphere is not a purely transparent medium since molecules and larger 

particles in the atmosphere attenuate the propagating radiation, while background 

radiance (solar and thermal) may completely mask IR targets. To predict the performance 

of EO/IR systems effectively, three major atmospheric factors affecting the propagation 

of an optical energy must be assessed, as well as their fluctuations. Those are refraction, 

extinction (by absorption and scattering), and turbulence. 

Refraction is the bending of light rays due to refractive index gradients in the 

atmosphere, which was analyzed in detail for the case of RF systems. In the optical 

spectra, it is evident by the presence of mirages. However, in the limited ranges of EO/IR 

systems, this is not usually a significant problem, except for laser illuminators and target 

designators. 

Turbulence are small scale inhomogeneities of the index of refraction creating 

distortions of an optical beam (such as beam wander and broadening, and scintillation). 

They are not significant in propagation of longer EM waves, yet their size is comparable 

to the optical wavelengths, so they are very important in propagation of the shorter IR 

waves. As a result, the resultant image can be blurred, distorted, or changed only from 

scene to scene, depending on the relation between the integration time in the detector 

elements and the scale of the turbulence. 

For turbulence, temperature is the most important factor. Therefore, it can exhibit 

strong diurnal cycling, and is distinctively influenced by the presence of sources of 

convection along the atmospheric path. As a consequence, the usual tactical prediction 

methods do not account for turbulence effects, particularly for distortion in imaging 

devices, yet significant improvements have been made to predict laser beam spreading, 
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since it is a critical issue for target illuminating systems and range finders. The prediction 

of turbulence requires precise estimations in time and space of the atmospheric pressure 

temperature, relative humidity and wind speed at the sea surface. This problem can be 

simplified by using the bulk method, given that suitable values of such variables can be 

obtained at some reference height (Davidson, 2003, p. 6-16). 

Extinction is the attenuation or loss of energy of electromagnetic radiation. The 

attenuation of monochromatic radiation (except at very high flux density) can be described 

by a form of Beer’s Law, also known as Bouguer's or Lambert's Law:  

 ( ) RI R Ie µ−=  (6.4) 

where I(R) is the attenuated radiation, I is the incident radiation, and R is the distance of 

travel or path length. The exponential factor Re µ− is also known as transmittance τ since it 

is used as a coefficient to account for the fraction of radiance effectively transmitted 

through the propagation path as the ratio I(z)/I. 

The attenuation coefficient µ  includes both the absorption and scattering effects 

of the atmospheric gas molecules aµ and of the aerosol particles bµ . The total attenuation 

coefficient is the combined effect of molecular absorption mκ , mostly from water vapor 

and ozone, molecular scattering mσ , aerosol absorption aκ , where absorption by dry 

particles is usually neglected, and aerosol scattering aσ , expressed by the sum 

 ( ) ( )a s m a m aµ µ µ κ κ σ σ= + = + + +  (6.5) 

In theory, the transmittance for a given band can be exactly computed, given there 

is enough data available for density, temperature and pressure of all the atmospheric 

components, as well as their spectral response for each wavelength within that band. 

Since it is very difficult to evaluate it for each spectral line (wavelength), certain profiles 

of pressure, temperature and molecular densities for a waveband may be assumed. 
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Even in a low-resolution calculation for a standard atmosphere, the transmission 

spectrum is complex, as shown in Figure 34. It shows several regions of almost null 

transmission due to atmospheric propagation, where the 3-5 and 8-12 µ m regions appear 

to be the most suitable wavelengths. 

 
Figure 35.   Typical transmittance of atmosphere for the IR region, over a 1 nmi path at 

sea level (From NAWCWPNS, 1997). 

However, even between these two “windows,” the performances of IR sensors 

may be significantly different. Generally, the 3-5 mµ  region has better transmission 

values, while the absorption extinction is more variable for the 8-12 mµ  over normal 

absolute humidity ranges. Thus, absorption can be a more degrading factor for the latter. 

Since water vapor is a major absorption parameter, shorter IR band systems could be 

considered more convenient for a low latitude marine environments due to the larger 

amounts of water vapor normally associated with such environments. 

Scattering can be described by the relationship of the aerosol particle radius r 

versus the wavelength λ  of the incident energy, but the extinction coefficients for 

scattering are mainly determined from all aerosols with a certain distribution of sizes 

(Figure 35). 
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Figure 36.   Classes and Sizes of Aerosols. (From Williamson, 1973). 

The usual atmospheric aerosols in optical scattering are too small (with radii 

between about 0.1 and 1.0) for rain alone to reduce haze and increase visibility. Instead, 

radical changes in the vertical temperature profile (such as a frontal passage) do increase 

horizontal visibility through the increased upward diffusion of the aerosols (Davidson, 

2003, p. 7-14). Scattering is also indirectly a function of relative humidity because when 

moisture increases, water molecules can accumulate on dry particles, making them grow 

quickly by deliquescence, creating rapid changes in the size distribution of hygroscopic 

aerosols and enhancing scattering. 

Wind is clearly another major factor in aerosol distributions over the ocean, 

because it enhances the generation of salt particles at the surface, particularly in speeds 

between 5 and 8 m/s, normally associated with the formation of white caps. As a 

consequence, extinction can be expected to increase with the wind speed for all 
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wavelengths, yet shorter wavelengths are the most affected. It is important to note that in 

the area of interest, these wind speed are very similar to the annual climatological 

average of 6 m/s (GMCA, 2004). 

Maritime environments are usually associated with natural large size aerosol 

backgrounds, being those more important degrading factors for the visible and near IR (3-

5 µm) systems. As a consequence, when used in littoral environments, they may be more 

degraded than they would be on a continental area or than in the LWIR (8-12) systems. 

C. THE USE OF MODELS AND TDAS 

It has been shown that for the proper design and operation of IR devices, it is 

critical to predict the transmittance of the atmosphere as a function of wavelength and 

weather conditions. Such prediction is a complex problem of computer modeling, but 

fortunately, extensive efforts in the development of models, computer codes and 

voluminous data libraries have been made. They can be classified in three major groups, 

according to their function: target models, sensor models, and propagation models. 

Target models are used to calculate the strength of the electro-optical signal at 

zero range for specific targets and background characteristics. They determine the 

radiance difference between the inherent signal emanating from the target and 

background, and converts it to an equivalent blackbody temperature difference via a 

thermal model based on three-dimensional heat transfer within the target as well as with 

the environment into a temperature difference T∆  at zero range. The target mean 

temperature and total projected area are used to compute range. 

Sensor Models describe the sensor performance in terms of MRTD or MDTD as a 

function of spatial frequency. These models determine the detection or the lock-on range 

of an electro-optical system when applied to the apparent target signature.  

Atmospheric Propagation Models to calculate the apparent temperature difference 

at the entrance aperture of the sensor by estimating the degradation of signal due to the 

atmosphere, such as LOWTRAN (Low Spectral Resolution Transmission), and 

MODTRAN (Moderate Spectral Resolution Transmission), have been more recently 

developed. 



65 

1. LOWTRAN (AFGL) 

As previously explained, real sensor systems require propagation predictions for a 

relatively broad bandwidth, but satisfactory results can be analytically calculated in the 

band of interest by calculating average transmittances contributing to the instrument 

sensitivity (“band models”) rather than characterizing numerous individual spectral lines. 

Such an approach is used in the atmospheric model LOWTRAN (Low Resolution 

Transmittance) for fast computational capability with reasonably accurate results in the 

spectral region from ultraviolet to the far infrared. This makes it suitable for operational 

purposes at surface levels and the lower atmosphere, being seriously degraded for levels 

above of approximately 40 km. 

IR transmission losses and sky backgrounds can be predicted using pressure, 

temperature and relative humidity (vapor pressure) from radiosonde data, and even from 

climatological profiles. In the meantime, they are largely determined by the effects of 

water vapor absorption along the path, and LOWTRAN can adequately account for them. 

However, non-representativeness of the profiles, the target parameters or the assumed 

aerosol distributions, depending on the actual environment, could lead to a considerable 

underestimation of scatter effects, with significant losses in accuracy. 

Since aerosol absorption and scattering are required to describe total 

transmittance, LOWTRAN includes selectable aerosol size distribution models for 

continental and marine regimes, such as the Navy Aerosol Model (NAM) and the Naval 

Oceanic Vertical Aerosol Model (NOVAM). 

2. Navy Aerosol Model (NAM)  

Marine aerosol size distributions are different that continental, so in the littorals, 

mixed continental-marine aerosol distribution may be complex. The simple Junge 

exponential distribution commonly used in the past (Davidson, 2003, p. 7-13) cannot 

describe such a wide range in sizes of common aerosols. Thus, more realistic estimates of 

aerosol distributions are needed. The present version of the Navy Aerosol Model (NAM) 

represents the size distributions of the aerosols in the surface layer over the sea in terms 

of four lognormal components.  
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Three are determined by routinely measured and analyzed meteorological 

parameters. The fourth, the air-mass type parameter (AMP), is a number describing the 

general condition from a pure air mass without contaminants to the situation downwind 

of a large industrial complex in a corresponding scale from one through ten. It is not 

routinely measured, so it can be based on empirical judgment. 

D. USING “TAWS” 

The Target Acquisition Weapons Software (TAWS) predicts the performance of 

electro-optical weapon and navigation systems. It replaces the Electro-Optical Tactical 

Decision Aid (EOTDA) and the Night Vision Goggles Operations Weapons Software 

(NOWS) for mission planning decisions, to modify mission execution tactics or weapons 

usage, or to evaluate the general environmental conditions for Infrared (3-5 5 µm and 8-

12 5 µm), Visible (0.4-0.9 5 µm, which includes both TV and NVG systems), and Laser 

(1.06 5 µm) systems already defined in its libraries. 

TAWS was designed to predict the performance of air-to-ground EO sensors and 

navigation systems. If the desired sensor system is not included in its inventory, new IR, 

TV, NVG, or 1.06 5 µm laser sensors can be added, by manually defining the required 

characteristics. Since the data to input has too many options available, this may not be an 

easy task. 

The types of missions supported by TAWS include target acquisition/detection, 

target designation and tracking, close air support, helicopter, refueling, take-off and 

landing, identification of pickup/drop zones, training, and search and rescue. A single 

mission may include several of these tasks.  

Illumination Analysis computes solar and lunar positions, illumination and event 

times for a specified location. Point-Based Analysis calculates detailed performance 

predictions for several locations in a given area or locations along a mission route. It 

involves the computation of detection range, detection probability, or lock-on range for a 

particular target at a particular location under specified weather conditions. Map-Based 

Analysis allows such predictions for several targets in a complete Area of Regard (AOR). 
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TAWS can also use elevation data to improve target masking and target 

shadowing computations from the Topographic Engineering Center (TEC), Digital 

Terrain Elevation Data (DTED), or choose not to use any (Lake, 2003). 

Some other interesting features allow determining the best attack axis for the 

specific time and altitude by combining the greatest detection and lock-on ranges, as well 

as the best time of day to attack a target or when the target detection surpasses a 

designated threshold of detection. The latter is also known as thermal crossover, since the 

sensor sees the target and the background as the same temperature, which is when there is 

no apparent thermal contrast and the target will be “invisible” to the system. 

For performance prediction, TAWS uses weather, sensor, and mission 

information. Weather information includes humidity, temperature, wind, and aerosol 

analyses valid at the TAWS valid time as well as for the preceding six hours. These 

parameters are for surface weather data, surface layer information, cloud information and 

upper layer parameters, up to a 30-hour period of time (18 hours before and 12 hours 

after the time over the target TOT). This is a requirement only for IR sensors, because the 

target and background signature models need hourly data for a minimum of six hours 

prior to TOT, to account for the effects of time of day and weather (Pagitt and Brooks, 

1993, 2003). 

The user can input weather data manually or automatically download weather 

data, from either the Air Force Weather Agency (AFWA) or the U.S. Navy's Tactical 

Environmental Data Server (TEDS), but the user must have valid ID and passwords as 

well as access to the Internet. In this study, the input data was manually entered. 

TAWS was used for demonstration only, to compare the effects on the variation 

of some basic parameters when enough data are available. TAWS attempts to derive 

information from what is available when data are not available for a particular location 

and time window, nor all the requested parameters, for instance, missing reports on 

cloudiness. If it is not possible, static default values are used. Therefore, serious 

limitations and cumbersome outputs may arise from not having properly defined surface 

and upper layer atmosphere information. The examples used show the relevancy in the 

proper definition of such data for the region of interest. 
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Since main interest is in comparing the influence of the atmosphere on similar 

detectors rather than engineering or design issues, available sensors from the TAWS 

libraries were initially chosen. Although TAWS and the included applications are not 

classified, the documentation that relates the characteristics of the sensors and their 

names is, the most common ones were selected from the original libraries and then 

customized. To achieve similar ranges (approximately 10-15 kms) on the MWIR and 

LWIR main wavebands, the MRT, MDTD, spatial frequencies and FOVs of the selected 

sensors were modified to be the same. 

Narrow FOVs were used to achieve the longest possible ranges, assuming prior 

cueing to the sensor from any other system, otherwise, detection alone will be sensibly 

shorter in range. This left the operating waveband the only relevant difference in 

hardware between them, so the expected performance would be solely the result of the 

environment influences and the correspondent response of the sensors to them. Some 

basic parameters of these two sensors are specified in Table 5. 

 

 
Table 5. Characteristics of a generic IR sensor, used for demonstrative purposes of an 

operational evaluation of performance 

As it turns out, none of the sensors already available in TAWS could achieve 

more than 15 km under the actual conditions used. This result is also in agreement with 

the most evident limitation for the IR sensors of the reduced line-of-sight (or equivalently 
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the slant range), which in this scenario resulted to be about 13 km with a height of the 

sensor of 15 m, as shown in Figure 36. Increasing the heights should produce extended 

ranges only for more capable devices, which are not commonly available. 

 

 
Figure 37.   Hourly variations of achievable slant range for sensors 1510 (LWIR, 8-12 

mm) and 8510 (MWIR, 3-5 mm) for 24-25 December 

The first example was based on the available data for 23-25 December, when the 

passage of a front cold was proven to modify limit the radar performance to ranges less 

than 30 km (almost 15 nmi). Initially, the analysis of Slant Range versus Azimuth Angles 

clearly showed the differences between the two sensors, as well as the direct influence of 

the azimuth. This particular case shows the results after sunset (25 December at 00 Z), 

with the moon already enhancing the detection when the target (heading to 315°) is seen 

from the southwest (sensor heading to 060°). Interestingly, the LWIR performed sensibly 

better than the MWIR with longer ranges roughly by ½, as shown in Figure 37, because 

the latter was remarkably sensible to the AMP number and to the humidity changes. In all 

cases, the MWIR was also severely degraded after sunset, while the LWIR sensor was 

not very affected. 
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Figure 38.   Plot of achievable slant range versus azimuth of the sensors for 25 

December at 00 Z (left) and 12 Z (right) 

These plots are useful to provide insights about surveillance direction distribution. 

TAWS can only display two dimensional graphs of the range performances. However, 

even when they show significant differences within only 12 hours of separation they do 

not show the variability of the atmospheric factors clearly. This is better displayed in time 

series of Pd (in these examples, displaying 24-hours periods), given the maximum ranges 

of 11 and 13 km. These plots start in 24 December at 1300 Z, finishing in 27 December at 

12 Z (Figure 38), which show the effects of the weather associated to the pass of the cold 

front. 
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Figure 39.   Hourly variations of achievable Pd for 24-25 (top), 25-26 (middle) and 26-

27 December (bottom), showing the effects of a cold front. 

It is important to note that the conditions depicted in the first series do not match 

the following one in the bottom panel, which transition is at 25 December, 1200Z. The 

|J■^J>^^FE[l 

i " 
S V 

i- 
I 

lUt   1«M   ««   1410   tv»   tHB  im   mt   ^W   UH um nwi obn   mm MHJ IBU MW DTIU 

Tiqi'iurn 

iHU]     IHd     I1»     IJIt 

...S...    .7....   |.    ..    I...        p.   . 

n—   J1H DID   jqa anD HH DjH   im bm mm twa am   IMI 

rimi lUTia 

■ut      IDt       'JM ■IW    "«    i>»    ■■«    ir«D     < 

11 U til Duiiib   ^idb rild 
■ ig □ H LLrtir MnMn 

11 U llr.4jl^   ^_l^< lii: 
F J J mil umu^. 



72 

former shows an important degradation of detecting capabilities after a 24 hours period 

under influence of the weather (right at the expected arrival of the front, end of the upper 

panel). It does not exactly coincide with the depiction in the second panel, which includes 

data only from the previous six hours (0700 through 1300). This is important to note that 

for TAWS, IR sensors do need weather inputs for times prior to Time Over Target 

(TOT), thus the lower panel does not show the severe degradations for the MWIR sensor 

(Id. 8510), which in this case would be a tremendous difference, misleading the 

predictions of expected Pd. 

Another evident and important result is shown early in December 26, 1100 

through 1800, where rain (particularly heavy at 1500 Z) completely prevented the 

detection with IR sensors. Just after the rain, the MWIR sensor (Id. 8510) performed even 

better than the other, presumably because of the combination of gales and rain 

momentarily cleared the atmosphere. However, as the wind persistently intensified, the 

MWIR was severely degraded very rapidly, and even the LWIR sensor showed some 

affectation, which can be clearly related to the increase in aerosols distribution. 

A second example was based upon the extreme case of tropical storm Claudette, 

which impacted the area of study in the morning of 11 July. The extreme weather 

conditions associated, and the relevance of high efficiency of operations along and after 

the passage of the storm, demands a thorough awareness of the achievable performance 

of the surveillance and detection systems.  

The first evidence of atmospheric influences is the reduced performance in the 

evenings, this time even for the LWIR sensor, compared to what was achieved in the 

previous examples. This is an expected result after the increased temperatures (both 

atmospheric and sea surface), as well as the more humid environment. Similarly, the rain 

was clearly a strong limiting factor, which in this case will be very severe. Another 

significant result is that now the performance of both sensors was not that dissimilar, yet 

the MWIR sensor appeared to be much better near midday, degrading by the afternoon, 

when the LWIR sensor would be a better option. 
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More importantly, the approach of the storm proved to be a very range degrading   

event associated with moderate to heavy rain, as early as 10 July in the afternoon. This 

basically nullified both sensors until the afternoon of 11 July, when rain stopped and 

moderate winds cleared the atmosphere. It must be mentioned that the winds after the 

pass of the storm were also persistent and strong enough to increase again the number of 

aerosols in the atmosphere, but that happened in the evening; since the performance of 

both sensors for this seasons was normally reduced in those hours, the effect of such 

winds could not be clearly assessed. 

Finally, after 12 and 13 July, when the effects of the storm vanished, the general 

performance of both sensors could be considered very similar again, with a strong 

response to the diurnal changes in temperature and humidity. 



74 

 (a) 

(b) 

(c) 

(d) 

 
Figure 40.   Hourly variations of achievable Pd for 8-9 (a), 9-10 (b), 10-11 (c) and 11-12 

(d) July showing the effects of tropical storm Claudette. 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

A. GENERAL REMARKS 

This work focused on the relevance of METOC factors on EM/EI system 

performances in tropical littoral environments. Tropical littoral regions are characterized 

by high water vapor content in the air above the surface, high probability of layering with 

anomalous electromagnetic propagation conditions, and the proximity to land influences. 

These factors can severely modify EM system performances and effectiveness, impacting 

on the typical operational scenarios of littoral warfare. 

Under such conditions, the proper employment of EW systems, including short to 

medium range radars with higher resolution, and EO/IR systems for the proper 

implementation of EA and EP actions, planning, and conduct of future operations 

strongly depend on adequate evaluation and prediction of their respective performances 

with METOC factors included. 

Technology improvements in the design of EW systems still encounter a major 

problem in atmospheric propagation effects that is very difficult to resolve. It has become 

very difficult to account for terrain features and atmospheric refraction, so the 

implementation of propagation models in computer based TDAs were proven to be a 

convenient solution. 

Operational TDAs such as AREPS to analyze performances of both ES and radar 

systems are quite suitable since they work basically in the same RF bands. On the other 

hand, EO/IR systems are quite sensitive to a larger number of factors. Thus, the use of 

TDAs as TAWS is more complex, requires more and better data sources, and more 

training to use. 

The evaluations of this study were made under the assumption of horizontal 

homogeneity of the atmosphere, which is seldom true. Hence high resolution data for the 

computer assisted TDAs to predict refractivity conditions are needed. The usual 

assumption of independence of the azimuth direction cannot suffice in littoral warfare, 

since the area of influence extends beyond the shore line and includes strong local effects  
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(such as orographic influences and coastal breezes). In that respect, AREPS, which 

allows for range dependence refractivity structure seemed to reasonably account for 

terrain effects along the path of propagation.  

Similarly, statistics of tropospheric ducts showed evidently seasonal and diurnal 

signals, although in this study the only included data were from the radiosonde station of 

Merida, Mexico, and accounts for SBDs, but not but not for the overwater EVD.  

A separate analysis was done with data from the GMCA to build what may be 

considered a “normal” monthly climatological surface profile. These profiles were built 

assuming that surface data itself allows the NPS model to describe the bottom of the 

boundary layer along the whole path properly. This is obviously a crucial but necessary 

assumption since there was not enough data to describe that path on its entirety 

effectively. 

B. SUMMARY OF RESULTS  

The resulting profiles showed EVDs with average height values (Z*) very likely 

to impact frequencies above 4 and 8 GHz, respectively. 

1. Seasonal and Diurnal Effects 

The monthly climatological profiles demonstrated evident relationships between 

the Z* values, SST and the air-sea temperature differences, although many other local 

factors and synoptic features are also expected to play a major role in the expected 

variability of the propagation characteristics. 

The influence of diurnal variations in temperature, humidity, pressure and coastal 

breezes were usually strong enough to clearly modify the regular EM propagation, yet 

their interaction with major synoptic and mesoscale events and their associated weather 

resulted in very complex patterns, which are not easily predictable. 

2. Winter and Cold Fronts 

Particularly important for considering EM/EO sensor operational purposes were 

the highly predictable cold fronts, repeatedly appearing in the area with only a few days 

of separation, during specific seasons, to produce significant anomalies in the refractive 

conditions in a matter of only a few hours, dynamics and instability patterns just ahead of  
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the front line, as well as strong subsidence, normally exist in the adjacent areas behind 

the front, as well as other atmospheric features such as cloudiness, fog, or rain, which 

severely modify the performance of EW systems. 

The frontal passages caused disruption in the local profiles. This caused 

radiosonde data available every 24 hours to be not good enough to depict such profiles in 

detail. A better understanding of their effects would be highly beneficial to optimize the 

performance and use of EM equipment. 

Finally, the subsidence associated with the high pressure air mass behind the front 

should enhance the layering and the EVD, so the propagation patterns would also look 

much like before the frontal system influenced the area.  

3. Tropical Cyclones 

Although a normal threat to the area of study from June to November, tropical 

cyclones are hardly reflected in the climatological databases. However, their effects 

clearly affect the EM propagation characteristics in critical operational moments. The 

tropical cyclone season coincides with higher probability of the occurrence of ducts, 

enhanced diurnal variability of such occurrences during the summer, and the lowest 

climatological ASTD.  

This study showed smooth profiles in the upper layers and low Z* values due to 

increasing winds and mixing ratios. Far from the cyclones’ center, a significant 

superrefractive layer appeared due to the dry air subsidence associated with the outer 

shear line, and thus, creating extended detection ranges in low levels for all the frequency 

bands. 

At the arrival of the storm, the high winds and strong mixing produced very 

smooth profiles, very similar to standard profiles. As the storm moved away, Z* values 

were again high enough to clearly enhance the detection ranges for upper band radars up 

to more than 100 km in surface, and then back to a profile very similar to that before the 

storm. 
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4. Terrain 

Significant differences were also found between the radar antenna directed 

offshore and inland, with important effects such as many narrow lobes over land, creating 

a cluttered distribution of the signal patterns, which may be especially disturbing to the 

detecting systems. The validity of such results is an issue outside the scope of this thesis 

that needs to be more carefully addressed with better data sources. 

5. Antenna Heights 

The mean EVD heights (Z*) observed under the expected conditions in this 

environment were very similar to the usual antenna heights of many naval radars. Hence, 

the EVD had a more significant impact. Examining different combinations of frequencies 

and antenna heights produced contrasting outcomes not always easily predicted. 

It is also important to note that the climatological mean EVD top height was about 

15m, very similar to the usual antenna heights of shipborne radars. As expected, the 

strongest effect of ducts was noticed when the antenna height was just below the top of 

the EVD (Z*). The radar horizon can effectively be increased with the antenna height, but 

when they are very similar, roughly half the radiation beams transmitted from the antenna 

(assumed to have a 0° elevation in all these scenarios) could be running almost parallel 

along the top of the EVD. Since these values cannot be taken as “hard limits,” the final 

results can be also be hard to predict. 

6. IR Propagation 

The models used and their sensitivities to the TAWS allowed inputs have been 

shown to be truly complex detection range outcomes can be often contrary to intuition. 

The table of sensitivities included in the user’s guide of TAWS shows how the main 

atmospheric variables (like air temperature, humidity, wind speeds) can be extremely 

important depending on other factors like the solar and lunar ephemeris, heading of the 

target and position of the sensor. Further, the relationship between those factors will also 

drastically change based on TOT and the general operational scenario.  

C. OPERATIONAL HIGHLIGHTS 

Superrefractive ducts are tactically significant, because RF systems may achieve 

larger ranges than expected, while also having “holes” where no signal will be present. 
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On the other hand, subrefraction can reduce the radar horizon and significant 

probability of fade outs (SDF) related. Although such phenomena were assumed not 

important in Tropical Littoral environments, warm fronts and thermal layering in those 

environments can exist. Therefore, they must also be analyzed. 

Propagation conditions were certainly different over the ocean than those over 

land because of diurnal heating, turbulence, and water vapor sources. The factors that 

provided the most useful insights for the analysis already assessed were: 

• Water surface temperatures based on the characteristics of oceanic 
currents, surges, etc. 

• Synoptic patterns, such as the presence of high pressure air masses, 
absence of low pressures associated with convergence. 

• Evidence of coastal breezes and diurnal  

In the particular case of clouds, satellite imagery was used only as a guidance to 

find potential layering (strong negative gradients of humidity), but extensive research and 

significant advances in techniques for satellite derived soundings, data, and winds, can 

certainly fill the gaps of required weather profiles, and must be widely investigated. 

Particularly for MFRs, serious limitations in detecting low flying aircrafts, 

combined with a false “awareness” of the operators produced by much better 

performances on surface detection, or greatly enhanced clutter, may suggest increasing 

the filtering and reducing the sensitivity of the radar to detect small sea skimming targets 

effectively.  

Lower EVDs can make detection of low surface targets very difficult, while radar 

capabilities for the Search and Rescue (SAR) of small boats and potential victims of the 

storm may be enhanced. Similarly, Command and Control of the air assets usually 

employed (such as helicopters and low flying airplanes) may also be disrupted by the 

surface based ducts, depending on their relative positions and frequencies used. 

Thick SBD (such as those after cold front passed) effectively enhance detection 

ranges in surface levels, but have associated several distinct gaps, “skip zones,” without 

any detection at all in the surface and near the top of the duct. Higher radar frequencies 

produce a more uniform coverage along the surface, without severe gaps. This is an  
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important consideration, because the presence of wide zones of strong detection may 

create a false feeling of confidence in the operators, if they are not aware of the existence 

of such blind “holes.” 

Despite the limitations of radiosonde data being available once every 24 hours, 

the surface data gave proof of the diurnal variability in the thickness of the EVD, with 

evident increases in the evenings. When the expected M gradients are not very strong, the 

bottom part of the profiles was more “sensitive” to the surface data available, so 

appending this data was very important to identify the existence of SBDs, which were 

found to be thick enough to severely degrade almost any device using frequencies above 

the L Band (1 GHz); hence, the relevancy of better availability and resolution for both 

surface and upper air data when more reliable results are required.  

The issue of data availability is more critical for IR than it was for the radar 

examples. Many times the missing parameters must be guessed or derived from others. 

As a consequence, extremely different values would not be rare, and the decision makers 

must be aware of that. In any event, the examples shown here must be considered only as 

a general guidance about such effects, and the importance of thoroughly understanding 

them has been highlighted.  

D. LIMITATIONS IN THE STUDY 

The TDAs employed have been designed to ingest compatible data effectively 

(even through automated links), but for this scenario, this proved to be not very realistic. 

Littoral environments were shown to change radically in the space of a few hours, so the 

lack of precise and time frequent enough measurements was the most limiting factor, 

since they could not be considered truly representative of the atmosphere to describe. 

Upper air soundings are very important but do not have enough resolution to 

describe evaporation ducts, so detailed surface data of air temperature, humidity (or water 

vapor contents), pressure, wind, and sea surface temperature is a major requirement. The 

radiosonde data available was complemented with surface data from automated weather 

stations networks and a tidal station, but still several gaps in the databases were found. 

Additionally, suspicious data had to be discarded, which prevented a more rigorous 

statistical evaluation. 
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Data collection platforms are rather heterogeneous and their databases are not 

necessarily compatible. Most of their data was in raw format, which complicated their 

integration and employment.  

No operational buoy provided METOC data to describe the actual conditions at 

sea in this area of interest. This seriously limited the possibility of identifying offshore 

weather patterns such as diurnal breezes, and hourly changes in temperature or humidity. 

Since this information is an extremely important requirement, it needs to be seriously 

considered for future research projects. 

E. RECOMMENDATIONS AND PROPOSALS FOR FURTHER RESEARCH 

This study was originally aimed at providing insights and guidelines to assist 

operational commanders and mission planners in their decision making processes. The 

results and conclusions of this study definitely indicate that more research is required to 

understand such a complex variety of tactical, environmental and technical issues fully. 

Additional efforts need to be made to assess and predict the variability of the relevant 

METOC factors accurately for each specific expected scenario. 

Both spatial and time resolution of data can be improved by using data from other 

platforms, such as buoys, surface stations, other ships, and eventually, satellite derived 

data and the outputs of computer models. The feasibility of complementing data from 

alternative data sources, and the added value of such data when used with a TDA in an 

operational environment, needs to be further studied. 

In summary, inherent environmental limitations of EW systems, when employed 

in a tropical littoral scenario, play a very important role. The evaluation of their combined 

effects is not a simple task to achieve, because the effects of atmospheric anomalies are 

hard to detect and even harder to measure. Since EW systems will always be subject to 

those effects, sometimes with opposing results, their performance can be seriously 

affected if proper corrections are not made for the specific environment where each 

device is expected to perform. 
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Failure to do so will result in a degradation of their effectiveness, significantly 

compromising the great investments made for such systems, and even the success of their 

mission, which by no means can be afforded in critical scenarios such as those typical of 

modern littoral warfare. 
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